These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 25466462)
1. Patterning of photocleavable zwitterionic polymer brush fabricated on silicon wafer. Kamada T; Yamazawa Y; Nakaji-Hirabayashi T; Kitano H; Usui Y; Hiroi Y; Kishioka T Colloids Surf B Biointerfaces; 2014 Nov; 123():878-86. PubMed ID: 25466462 [TBL] [Abstract][Full Text] [Related]
2. A novel approach for UV-patterning with binary polymer brushes. Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Saruwatari Y; Matsuoka K Colloids Surf B Biointerfaces; 2018 Jan; 161():42-50. PubMed ID: 29040833 [TBL] [Abstract][Full Text] [Related]
3. Gradation of proteins and cells attached to the surface of bio-inert zwitterionic polymer brush. Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Kishioka T; Usui Y Colloids Surf B Biointerfaces; 2016 Aug; 144():180-187. PubMed ID: 27085477 [TBL] [Abstract][Full Text] [Related]
4. Anti-biofouling properties of an amphoteric polymer brush constructed on a glass substrate. Kitano H; Kondo T; Kamada T; Iwanaga S; Nakamura M; Ohno K Colloids Surf B Biointerfaces; 2011 Nov; 88(1):455-62. PubMed ID: 21820283 [TBL] [Abstract][Full Text] [Related]
5. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations. Iwata R; Suk-In P; Hoven VP; Takahara A; Akiyoshi K; Iwasaki Y Biomacromolecules; 2004; 5(6):2308-14. PubMed ID: 15530046 [TBL] [Abstract][Full Text] [Related]
6. Structure of water in the vicinity of a zwitterionic polymer brush as examined by sum frequency generation method. Kondo T; Nomura K; Murou M; Gemmei-Ide M; Kitano H; Noguchi H; Uosaki K; Ohno K; Saruwatari Y Colloids Surf B Biointerfaces; 2012 Dec; 100():126-32. PubMed ID: 22766288 [TBL] [Abstract][Full Text] [Related]
7. Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces. Dong R; Krishnan S; Baird BA; Lindau M; Ober CK Biomacromolecules; 2007 Oct; 8(10):3082-92. PubMed ID: 17880179 [TBL] [Abstract][Full Text] [Related]
8. Image printing on the surface of anti-biofouling zwitterionic polymer brushes by ion beam irradiation. Kitano H; Suzuki H; Kondo T; Sasaki K; Iwanaga S; Nakamura M; Ohno K; Saruwatari Y Macromol Biosci; 2011 Apr; 11(4):557-64. PubMed ID: 21243650 [TBL] [Abstract][Full Text] [Related]
9. Direct patterning of intrinsically electron beam sensitive polymer brushes. Rastogi A; Paik MY; Tanaka M; Ober CK ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228 [TBL] [Abstract][Full Text] [Related]
10. Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures. Inoue Y; Ishihara K Colloids Surf B Biointerfaces; 2010 Nov; 81(1):350-7. PubMed ID: 20705439 [TBL] [Abstract][Full Text] [Related]
11. Electropatterning of binary polymer brushes by surface-initiated RAFT and ATRP. Tria MC; Advincula RC Macromol Rapid Commun; 2011 Jul; 32(13):966-71. PubMed ID: 21542044 [TBL] [Abstract][Full Text] [Related]
12. Molecular interaction forces generated during protein adsorption to well-defined polymer brush surfaces. Sakata S; Inoue Y; Ishihara K Langmuir; 2015 Mar; 31(10):3108-14. PubMed ID: 25719761 [TBL] [Abstract][Full Text] [Related]
13. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling. Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of zwitterionic polymer brushes hybrid silica nanoparticles via controlled polymerization for highly efficient enrichment of glycopeptides. Huang G; Xiong Z; Qin H; Zhu J; Sun Z; Zhang Y; Peng X; ou J; Zou H Anal Chim Acta; 2014 Jan; 809():61-8. PubMed ID: 24418134 [TBL] [Abstract][Full Text] [Related]
15. Well-defined protein-polymer conjugates via in situ RAFT polymerization. Boyer C; Bulmus V; Liu J; Davis TP; Stenzel MH; Barner-Kowollik C J Am Chem Soc; 2007 Jun; 129(22):7145-54. PubMed ID: 17500523 [TBL] [Abstract][Full Text] [Related]
16. Surface-active and stimuli-responsive polymer--Si(100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion. Xu FJ; Zhong SP; Yung LY; Kang ET; Neoh KG Biomacromolecules; 2004; 5(6):2392-403. PubMed ID: 15530056 [TBL] [Abstract][Full Text] [Related]
17. Stratified polymer brushes from microcontact printing of polydopamine initiator on polymer brush surfaces. Wei Q; Yu B; Wang X; Zhou F Macromol Rapid Commun; 2014 Jun; 35(11):1046-54. PubMed ID: 24648357 [TBL] [Abstract][Full Text] [Related]
18. Temperature-responsive polymer brush constructed on a colloidal gold monolayer. Kitano H; Kago H; Matsuura K J Colloid Interface Sci; 2009 Mar; 331(2):343-50. PubMed ID: 19101682 [TBL] [Abstract][Full Text] [Related]
19. RAFT-mediated synthesis of cationic poly[(ar-vinylbenzyl)trimethylammonium chloride] brushes for quantitative DNA immobilization. Demirci S; Caykara T Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):111-20. PubMed ID: 25428051 [TBL] [Abstract][Full Text] [Related]
20. Bactericidal Ability of Well-Controlled Cationic Polymer Brush Surfaces and the Interaction Analysis by Quartz Crystal Microbalance with Dissipation. Masuda T; Watanabe Y; Kozuka Y; Saegusa Y; Takai M Langmuir; 2023 Nov; 39(46):16522-16531. PubMed ID: 37930305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]