BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25466625)

  • 1. Dynamic estimation of specific fluxes in metabolic networks using non-linear dynamic optimization.
    Vercammen D; Logist F; Impe JV
    BMC Syst Biol; 2014 Dec; 8():132. PubMed ID: 25466625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotope-assisted metabolic flux analysis as an equality-constrained nonlinear program for improved scalability and robustness.
    Lugar DJ; Sriram G
    PLoS Comput Biol; 2022 Mar; 18(3):e1009831. PubMed ID: 35324890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pool size measurements improve precision of flux estimates but increase sensitivity to unmodeled reactions outside the core network in isotopically nonstationary metabolic flux analysis (INST-MFA).
    Zheng AO; Sher A; Fridman D; Musante CJ; Young JD
    Biotechnol J; 2022 Mar; 17(3):e2000427. PubMed ID: 35085426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of dynamic metabolic flux analysis for process modeling: Robust flux estimation with regularization, confidence bounds, and selection of elementary modes.
    Hebing L; Neymann T; Engell S
    Biotechnol Bioeng; 2020 Jul; 117(7):2058-2073. PubMed ID: 32196640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic metabolic flux analysis--tools for probing transient states of metabolic networks.
    Antoniewicz MR
    Curr Opin Biotechnol; 2013 Dec; 24(6):973-8. PubMed ID: 23611566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state.
    Leighty RW; Antoniewicz MR
    Metab Eng; 2011 Nov; 13(6):745-55. PubMed ID: 22001431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On dynamically generating relevant elementary flux modes in a metabolic network using optimization.
    Oddsdóttir HÆ; Hagrot E; Chotteau V; Forsgren A
    J Math Biol; 2015 Oct; 71(4):903-20. PubMed ID: 25323319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline.
    Foster CJ; Gopalakrishnan S; Antoniewicz MR; Maranas CD
    PLoS Comput Biol; 2019 Sep; 15(9):e1007319. PubMed ID: 31504032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stoichiometric modelling of microbial metabolism.
    Kuepfer L
    Methods Mol Biol; 2014; 1191():3-18. PubMed ID: 25178781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p13CMFA: Parsimonious 13C metabolic flux analysis.
    Foguet C; Jayaraman A; Marin S; Selivanov VA; Moreno P; Messeguer R; de Atauri P; Cascante M
    PLoS Comput Biol; 2019 Sep; 15(9):e1007310. PubMed ID: 31490922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks.
    Millard P; Schmitt U; Kiefer P; Vorholt JA; Heux S; Portais JC
    PLoS Comput Biol; 2020 Apr; 16(4):e1007799. PubMed ID: 32287281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OptFlux: an open-source software platform for in silico metabolic engineering.
    Rocha I; Maia P; Evangelista P; Vilaça P; Soares S; Pinto JP; Nielsen J; Patil KR; Ferreira EC; Rocha M
    BMC Syst Biol; 2010 Apr; 4():45. PubMed ID: 20403172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter estimation of dynamic biological network models using integrated fluxes.
    Liu Y; Gunawan R
    BMC Syst Biol; 2014 Nov; 8():127. PubMed ID: 25403239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CycleFreeFlux: efficient removal of thermodynamically infeasible loops from flux distributions.
    Desouki AA; Jarre F; Gelius-Dietrich G; Lercher MJ
    Bioinformatics; 2015 Jul; 31(13):2159-65. PubMed ID: 25701569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. INCA 2.0: A tool for integrated, dynamic modeling of NMR- and MS-based isotopomer measurements and rigorous metabolic flux analysis.
    Rahim M; Ragavan M; Deja S; Merritt ME; Burgess SC; Young JD
    Metab Eng; 2022 Jan; 69():275-285. PubMed ID: 34965470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kriging-Based Parameter Estimation Algorithm for Metabolic Networks Combined with Single-Dimensional Optimization and Dynamic Coordinate Perturbation.
    Wang H; Wang X; Li Z; Li K
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1142-1154. PubMed ID: 26661788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle.
    Song HS; Reifman J; Wallqvist A
    PLoS One; 2014; 9(11):e112524. PubMed ID: 25397773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring Metabolic Flux from Time-Course Metabolomics.
    Campit S; Chandrasekaran S
    Methods Mol Biol; 2020; 2088():299-313. PubMed ID: 31893379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inference and Prediction of Metabolic Network Fluxes.
    Nikoloski Z; Perez-Storey R; Sweetlove LJ
    Plant Physiol; 2015 Nov; 169(3):1443-55. PubMed ID: 26392262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.