These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2546671)

  • 1. Gin-mediated recombination of catenated and knotted DNA substrates: implications for the mechanism of interaction between cis-acting sites.
    Kanaar R; van de Putte P; Cozzarelli NR
    Cell; 1989 Jul; 58(1):147-59. PubMed ID: 2546671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination.
    Benjamin KR; Abola AP; Kanaar R; Cozzarelli NR
    J Mol Biol; 1996 Feb; 256(1):50-65. PubMed ID: 8609613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processive recombination by the phage Mu Gin system: implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action.
    Kanaar R; Klippel A; Shekhtman E; Dungan JM; Kahmann R; Cozzarelli NR
    Cell; 1990 Jul; 62(2):353-66. PubMed ID: 2164890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processive recombination by wild-type gin and an enhancer-independent mutant. Insight into the mechanisms of recombination selectivity and strand exchange.
    Crisona NJ; Kanaar R; Gonzalez TN; Zechiedrich EL; Klippel A; Cozzarelli NR
    J Mol Biol; 1994 Oct; 243(3):437-57. PubMed ID: 7966272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phage P1 Cre-loxP site-specific recombination. Effects of DNA supercoiling on catenation and knotting of recombinant products.
    Abremski K; Hoess R
    J Mol Biol; 1985 Jul; 184(2):211-20. PubMed ID: 3875731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of strand exchange and DNA binding of enhancer-independent Gin recombinase mutants.
    Klippel A; Kanaar R; Kahmann R; Cozzarelli NR
    EMBO J; 1993 Mar; 12(3):1047-57. PubMed ID: 8384550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Mu enhancer is functionally asymmetric both in cis and in trans. Topological selectivity of Mu transposition is enhancer-independent.
    Jiang H; Harshey RM
    J Biol Chem; 2001 Feb; 276(6):4373-81. PubMed ID: 11084034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gin mutants that can be suppressed by a Fis-independent mutation.
    Spaeny-Dekking L; Schlicher E; Franken K; van de Putte P; Goosen N
    J Bacteriol; 1995 Jan; 177(1):222-8. PubMed ID: 7798135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of DNA topology in Mu transposition: mechanism of sensing the relative orientation of two DNA segments.
    Craigie R; Mizuuchi K
    Cell; 1986 Jun; 45(6):793-800. PubMed ID: 3011279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of the Gin recombination protein of Escherichia coli phage Mu and its host factor.
    Kanaar R; van de Putte P; Cozzarelli NR
    Biochim Biophys Acta; 1986 Mar; 866(2-3):170-7. PubMed ID: 3006776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A genetic switch in vitro: DNA inversion by Gin protein of phage Mu.
    Plasterk RH; Kanaar R; van de Putte P
    Proc Natl Acad Sci U S A; 1984 May; 81(9):2689-92. PubMed ID: 6232613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gin-mediated DNA inversion: product structure and the mechanism of strand exchange.
    Kanaar R; van de Putte P; Cozzarelli NR
    Proc Natl Acad Sci U S A; 1988 Feb; 85(3):752-6. PubMed ID: 2829201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of unusual gin mutants.
    Klippel A; Cloppenborg K; Kahmann R
    EMBO J; 1988 Dec; 7(12):3983-9. PubMed ID: 2974801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of DNA inversion by FIS: evidence for enhancer-independent contacts with the Gin-gix complex.
    Deufel A; Hermann T; Kahmann R; Muskhelishvili G
    Nucleic Acids Res; 1997 Oct; 25(19):3832-9. PubMed ID: 9380505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Path of DNA within the Mu transpososome. Transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils.
    Pathania S; Jayaram M; Harshey RM
    Cell; 2002 May; 109(4):425-36. PubMed ID: 12086600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knotting of DNA caused by a genetic rearrangement. Evidence for a nucleosome-like structure in site-specific recombination of bacteriophage lambda.
    Pollock TJ; Nash HA
    J Mol Biol; 1983 Oct; 170(1):1-18. PubMed ID: 6226803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA inversion in bacteriophage Mu: characterization of the inversion site.
    Schmucker R; Ritthaler W; Stern B; Kamp D
    J Gen Virol; 1986 Jun; 67 ( Pt 6)():1123-33. PubMed ID: 3011972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and properties of the DNA invertase gin encoded by bacteriophage Mu.
    Mertens G; Fuss H; Kahmann R
    J Biol Chem; 1986 Nov; 261(33):15668-72. PubMed ID: 3782082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer.
    Heichman KA; Johnson RC
    Science; 1990 Aug; 249(4968):511-7. PubMed ID: 2166334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombination site selection by Tn3 resolvase: topological tests of a tracking mechanism.
    Benjamin HW; Matzuk MM; Krasnow MA; Cozzarelli NR
    Cell; 1985 Jan; 40(1):147-58. PubMed ID: 2981625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.