BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25466763)

  • 1. A comparison of two laboratories for the measurement of wood dust using button sampler and diffuse reflection infrared Fourier-transform spectroscopy (DRIFTS).
    Chirila MM; Sarkisian K; Andrew ME; Kwon CW; Rando RJ; Harper M
    Ann Occup Hyg; 2015 Apr; 59(3):336-46. PubMed ID: 25466763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative mid-infrared diffuse reflection of occupational wood dust exposures.
    Chirila MM; Lee T; Flemmer MM; Slaven JE; Harper M
    Appl Spectrosc; 2011 Mar; 65(3):243-9. PubMed ID: 21352643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of airborne wood dust in Button samples by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).
    Kwon CW; Chirila MM; Lee T; Harper M; Rando RJ
    Int J Environ Anal Chem; 2013; 93(13):1356-66. PubMed ID: 26526539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-filter determination of collected wood dust by diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS).
    Rando RJ; Gibson RA; Kwon CW; Poovey HG; Glindmeyer HW
    J Environ Monit; 2005 Jul; 7(7):675-80. PubMed ID: 15986046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of total and inhalable samplers for the collection of wood dust in three wood products industries.
    Harper M; Muller BS
    J Environ Monit; 2002 Oct; 4(5):648-56. PubMed ID: 12400909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of wood-dust aerosol size-distributions collected by air samplers.
    Harper M; Akbar MZ; Andrew ME
    J Environ Monit; 2004 Jan; 6(1):18-22. PubMed ID: 14737465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples.
    Miller AL; Murphy NC; Bayman SJ; Briggs ZP; Kilpatrick AD; Quinn CA; Wadas MR; Cauda EG; Griffiths PR
    J Occup Environ Hyg; 2015; 12(7):421-30. PubMed ID: 25636081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining particle size distributions in the inhalable size range for wood dust collected by air samplers.
    Harper M; Muller BS; Bartolucci A
    J Environ Monit; 2002 Oct; 4(5):642-7. PubMed ID: 12400908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A survey of size-fractionated dust levels in the U.S. wood processing industry.
    Kalliny MI; Brisolara JA; Glindmeyer H; Rando R
    J Occup Environ Hyg; 2008 Aug; 5(8):501-10. PubMed ID: 18569517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wood dust sampling: field evaluation of personal samplers when large particles are present.
    Lee T; Harper M; Slaven JE; Lee K; Rando RJ; Maples EH
    Ann Occup Hyg; 2011 Mar; 55(2):180-91. PubMed ID: 21036895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory and field testing of sampling methods for inhalable and respirable dust.
    Linnainmaa M; Laitinen J; Leskinen A; Sippula O; Kalliokoski P
    J Occup Environ Hyg; 2008 Jan; 5(1):28-35. PubMed ID: 18041642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct-reading inhalable dust monitoring--an assessment of current measurement methods.
    Thorpe A; Walsh PT
    Ann Occup Hyg; 2013 Aug; 57(7):824-41. PubMed ID: 23704135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field comparison of two inhalable samplers used in Italy to measure the wood dust exposure.
    Campopiano A; Basili F; Angelosanto F; Cannizzaro A; Olori A; Ramires D; Iannò A; Angelici L
    Int J Occup Environ Health; 2016 Apr; 22(2):159-66. PubMed ID: 27373902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of exposure to oak wood dust using gallic acid as a chemical marker.
    Carrieri M; Scapellato ML; Salamon F; Gori G; Trevisan A; Bartolucci GB
    Int Arch Occup Environ Health; 2016 Jan; 89(1):115-21. PubMed ID: 25940655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between Personal Measurements of 'Total' Dust, Respirable, Thoracic, and Inhalable Aerosol Fractions in the Cement Production Industry.
    Notø HP; Nordby KC; Eduard W
    Ann Occup Hyg; 2016 May; 60(4):453-66. PubMed ID: 26755796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory study of selected personal inhalable aerosol samplers.
    Görner P; Simon X; Wrobel R; Kauffer E; Witschger O
    Ann Occup Hyg; 2010 Mar; 54(2):165-87. PubMed ID: 20147627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airborne endotoxin in woodworking (joinery) shops.
    Harper M; Andrew ME
    J Environ Monit; 2006 Jan; 8(1):73-8. PubMed ID: 16395462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration of high flow rate thoracic-size selective samplers.
    Lee T; Thorpe A; Cauda E; Harper M
    J Occup Environ Hyg; 2016; 13(6):D93-8. PubMed ID: 26891196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-methylanthraquinone as a marker of occupational exposure to teak wood dust in boatyards.
    Gori G; Carrieri M; Scapellato ML; Parvoli G; Ferrara D; Rella R; Sturaro A; Bartolucci GB
    Ann Occup Hyg; 2009 Jan; 53(1):27-32. PubMed ID: 18977849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.