BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25466894)

  • 21. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis.
    Frau M; Feo F; Pascale RM
    J Hepatol; 2013 Oct; 59(4):830-41. PubMed ID: 23665184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas.
    Teng YW; Mehedint MG; Garrow TA; Zeisel SH
    J Biol Chem; 2011 Oct; 286(42):36258-67. PubMed ID: 21878621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Corticoadrenal activity in rat regulates betaine-homocysteine S-methyltransferase expression with opposite effects in liver and kidney.
    Fridman O; Morales AV; Bortoni LE; Turk-Noceto PC; Prieto EA
    J Biosci; 2012 Mar; 37(1):115-23. PubMed ID: 22357209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Betaine consumption as a new clinical approach to treatment and prophylaxis of folate-related pathologies.
    Yeroshkina K; Rossokha Z; Fishchuk L; Gorovenko N
    Nutr Rev; 2023 May; 81(6):716-726. PubMed ID: 36164833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nicotinamide N-Methyltransferase Interacts with Enzymes of the Methionine Cycle and Regulates Methyl Donor Metabolism.
    Hong S; Zhai B; Pissios P
    Biochemistry; 2018 Oct; 57(40):5775-5779. PubMed ID: 30226369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction between dietary methionine and methyl donor intake on rat liver betaine-homocysteine methyltransferase gene expression and organization of the human gene.
    Park EI; Garrow TA
    J Biol Chem; 1999 Mar; 274(12):7816-24. PubMed ID: 10075673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of increasing concentrations of dl-methionine and 2-hydroxy-4-(methylthio) butanoic acid on hepatic genes controlling methionine regeneration and gluconeogenesis.
    Zhang Q; Bertics SJ; Luchini ND; White HM
    J Dairy Sci; 2016 Oct; 99(10):8451-8460. PubMed ID: 27474977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of S-adenosyl methionine synthesis in the mouse embryo.
    Menezo Y; Khatchadourian C; Gharib A; Hamidi J; Greenland T; Sarda N
    Life Sci; 1989; 44(21):1601-9. PubMed ID: 2733543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short communication: The effect of increasing concentrations of different methionine forms and 2-hydroxy-4-(methylthio)butanoic acid on genes controlling methionine metabolism in primary bovine neonatal hepatocytes.
    Zhang Q; White HM
    J Dairy Sci; 2019 Jan; 102(1):866-870. PubMed ID: 30391174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of prolonged ethanol feeding on methionine metabolism in rat liver.
    Barak AJ; Beckenhauer HC; Tuma DJ; Badakhsh S
    Biochem Cell Biol; 1987 Mar; 65(3):230-3. PubMed ID: 3580171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dysregulated Hepatic Methionine Metabolism Drives Homocysteine Elevation in Diet-Induced Nonalcoholic Fatty Liver Disease.
    Pacana T; Cazanave S; Verdianelli A; Patel V; Min HK; Mirshahi F; Quinlivan E; Sanyal AJ
    PLoS One; 2015; 10(8):e0136822. PubMed ID: 26322888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elevated dimethylglycine in blood of children with congenital heart defects and their mothers.
    Alsayed R; Al Quobaili F; Srour S; Geisel J; Obeid R
    Metabolism; 2013 Aug; 62(8):1074-80. PubMed ID: 23481916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alcoholic liver disease and methionine metabolism.
    Kharbanda KK
    Semin Liver Dis; 2009 May; 29(2):155-65. PubMed ID: 19387915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of betaine-homocysteine S-methyltransferase causes hyperhomocysteinemia in mice.
    Collinsova M; Strakova J; Jiracek J; Garrow TA
    J Nutr; 2006 Jun; 136(6):1493-7. PubMed ID: 16702310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic and epigenetic regulation of BHMT is associated with folate therapy efficacy in hyperhomocysteinaemia.
    Li D; Yang J; Zhao Q; Zhang C; Ren B; Yue L; Du B; Godfrey O; Huang X; Zhang W
    Asia Pac J Clin Nutr; 2019; 28(4):879-887. PubMed ID: 31826386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Choline, Other Methyl-Donors and Epigenetics.
    Zeisel S
    Nutrients; 2017 Apr; 9(5):. PubMed ID: 28468239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential effects of dietary selenium (se) and folate on methyl metabolism in liver and colon of rats.
    Uthus EO; Ross SA; Davis CD
    Biol Trace Elem Res; 2006 Mar; 109(3):201-14. PubMed ID: 16632891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S-methyltransferase.
    Mládková J; Hladílková J; Diamond CE; Tryon K; Yamada K; Garrow TA; Jungwirth P; Koutmos M; Jiráček J
    Proteins; 2014 Oct; 82(10):2552-64. PubMed ID: 24895213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Betaine, ethanol, and the liver: a review.
    Barak AJ; Beckenhauer HC; Tuma DJ
    Alcohol; 1996; 13(4):395-8. PubMed ID: 8836329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved methylation in E. coli via an efficient methyl supply system driven by betaine.
    Liu Q; Lin B; Tao Y
    Metab Eng; 2022 Jul; 72():46-55. PubMed ID: 35189350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.