These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 25466993)
1. Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Gai C; Zhang Y; Chen WT; Zhou Y; Schideman L; Zhang P; Tommaso G; Kuo CT; Dong Y Bioresour Technol; 2015 May; 184():328-335. PubMed ID: 25466993 [TBL] [Abstract][Full Text] [Related]
2. Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts. Zhang J; Chen WT; Zhang P; Luo Z; Zhang Y Bioresour Technol; 2013 Apr; 133():389-97. PubMed ID: 23454385 [TBL] [Abstract][Full Text] [Related]
3. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449 [TBL] [Abstract][Full Text] [Related]
4. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Xu Y; Zheng X; Yu H; Hu X Bioresour Technol; 2014 Mar; 156():1-5. PubMed ID: 24472700 [TBL] [Abstract][Full Text] [Related]
5. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Du Z; Hu B; Shi A; Ma X; Cheng Y; Chen P; Liu Y; Lin X; Ruan R Bioresour Technol; 2012 Dec; 126():354-7. PubMed ID: 23116820 [TBL] [Abstract][Full Text] [Related]
6. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water. Gai C; Li Y; Peng N; Fan A; Liu Z Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472 [TBL] [Abstract][Full Text] [Related]
7. A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate. Ekpo U; Ross AB; Camargo-Valero MA; Williams PT Bioresour Technol; 2016 Jan; 200():951-60. PubMed ID: 26615335 [TBL] [Abstract][Full Text] [Related]
8. Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: crude polysaccharides, crude proteins and their binary mixtures. Yang W; Li X; Li Z; Tong C; Feng L Bioresour Technol; 2015 Nov; 196():99-108. PubMed ID: 26231129 [TBL] [Abstract][Full Text] [Related]
9. Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Tommaso G; Chen WT; Li P; Schideman L; Zhang Y Bioresour Technol; 2015 Feb; 178():139-146. PubMed ID: 25455086 [TBL] [Abstract][Full Text] [Related]
10. Thermo-chemical conversion of Chlorella pyrenoidosa to liquid biofuels. Duan P; Jin B; Xu Y; Yang Y; Bai X; Wang F; Zhang L; Miao J Bioresour Technol; 2013 Apr; 133():197-205. PubMed ID: 23425587 [TBL] [Abstract][Full Text] [Related]
11. Effect of temperature on toxicity and biodegradability of dissolved organic nitrogen formed during hydrothermal liquefaction of biomass. Alimoradi S; Stohr H; Stagg-Williams S; Sturm B Chemosphere; 2020 Jan; 238():124573. PubMed ID: 31454741 [TBL] [Abstract][Full Text] [Related]
12. Nutrient removal and energy production from aqueous phase of bio-oil generated via hydrothermal liquefaction of algae. Shanmugam SR; Adhikari S; Shakya R Bioresour Technol; 2017 Apr; 230():43-48. PubMed ID: 28157563 [TBL] [Abstract][Full Text] [Related]
13. Hydrothermal liquefaction of microalgae for biocrude production: Improving the biocrude properties with vacuum distillation. Eboibi BE; Lewis DM; Ashman PJ; Chinnasamy S Bioresour Technol; 2014 Dec; 174():212-21. PubMed ID: 25463802 [TBL] [Abstract][Full Text] [Related]
14. Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds. Sheng L; Wang X; Yang X Bioresour Technol; 2018 Jan; 247():14-20. PubMed ID: 28946088 [TBL] [Abstract][Full Text] [Related]
15. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction. Cheng J; Huang R; Yu T; Li T; Zhou J; Cen K Bioresour Technol; 2014 Jan; 151():415-8. PubMed ID: 24183493 [TBL] [Abstract][Full Text] [Related]
16. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: effects of operational parameters and relations of products. Tian C; Liu Z; Zhang Y; Li B; Cao W; Lu H; Duan N; Zhang L; Zhang T Bioresour Technol; 2015 May; 184():336-343. PubMed ID: 25466998 [TBL] [Abstract][Full Text] [Related]
17. Effects of Lipids and Type of Amino Acid in Protein in Microalgae on Nitrogen Reaction Pathways during Hydrothermal Liquefaction. Bao T; Zhu J; Zhang N; Shao Y Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834414 [TBL] [Abstract][Full Text] [Related]
18. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction. López Barreiro D; Samorì C; Terranella G; Hornung U; Kruse A; Prins W Bioresour Technol; 2014 Dec; 174():256-65. PubMed ID: 25463806 [TBL] [Abstract][Full Text] [Related]
19. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Kim S; Park JE; Cho YB; Hwang SJ Bioresour Technol; 2013 Sep; 144():8-13. PubMed ID: 23850820 [TBL] [Abstract][Full Text] [Related]
20. Simultaneously concentrating and pretreating of microalgae Chlorella spp. by three-phase partitioning. Li Z; Jiang F; Li Y; Zhang X; Tan T Bioresour Technol; 2013 Dec; 149():286-91. PubMed ID: 24121370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]