BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 25466997)

  • 21. A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae.
    Jazzar S; Quesada-Medina J; Olivares-Carrillo P; Marzouki MN; Acién-Fernández FG; Fernández-Sevilla JM; Molina-Grima E; Smaali I
    Bioresour Technol; 2015 Aug; 190():281-8. PubMed ID: 25965253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology.
    Taher H; Al-Zuhair S; Al-Marzouqi AH; Haik Y; Farid MM
    Enzyme Res; 2011; 2011():468292. PubMed ID: 21915372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microwave-Assisted Biodiesel Production from Microalgae, Scenedesmus Species, Using Goat Bone-Made Nano-catalyst.
    Mamo TT; Mekonnen YS
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1147-1162. PubMed ID: 31712990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent developments of downstream processing for microbial lipids and conversion to biodiesel.
    Yellapu SK; Bharti ; Kaur R; Kumar LR; Tiwari B; Zhang X; Tyagi RD
    Bioresour Technol; 2018 May; 256():515-528. PubMed ID: 29472122
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Gufrana T; Islam H; Khare S; Pandey A; P R
    Prep Biochem Biotechnol; 2023; 53(2):120-135. PubMed ID: 35499507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Life cycle assessment of biodiesel production from algal bio-crude oils extracted under subcritical water conditions.
    Ponnusamy S; Reddy HK; Muppaneni T; Downes CM; Deng S
    Bioresour Technol; 2014 Oct; 170():454-461. PubMed ID: 25164337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of hydrolysis-esterification biodiesel production from wet microalgae.
    Song C; Liu Q; Ji N; Deng S; Zhao J; Li S; Kitamura Y
    Bioresour Technol; 2016 Aug; 214():747-754. PubMed ID: 27209457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions.
    Patil PD; Reddy H; Muppaneni T; Schaub T; Holguin FO; Cooke P; Lammers P; Nirmalakhandan N; Li Y; Lu X; Deng S
    Bioresour Technol; 2013 Jul; 139():308-15. PubMed ID: 23665692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progress and Challenges in Microalgal Biodiesel Production.
    Mallick N; Bagchi SK; Koley S; Singh AK
    Front Microbiol; 2016; 7():1019. PubMed ID: 27446055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of direct conversion method for microalgal biodiesel production using wet biomass of Nannochloropsis salina.
    Kim TH; Suh WI; Yoo G; Mishra SK; Farooq W; Moon M; Shrivastav A; Park MS; Yang JW
    Bioresour Technol; 2015 Sep; 191():438-44. PubMed ID: 25827362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Techno-economic assessment of conventional and direct-transesterification processes for microalgal biomass to biodiesel conversion.
    Lee JC; Lee B; Heo J; Kim HW; Lim H
    Bioresour Technol; 2019 Dec; 294():122173. PubMed ID: 31586730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Progress on lipid extraction from wet algal biomass for biodiesel production.
    Ghasemi Naghdi F; González González LM; Chan W; Schenk PM
    Microb Biotechnol; 2016 Nov; 9(6):718-726. PubMed ID: 27194507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extraction of saponifiable lipids from wet microalgal biomass for biodiesel production.
    Jiménez Callejón MJ; Robles Medina A; Macías Sánchez MD; Hita Peña E; Esteban Cerdán L; González Moreno PA; Molina Grima E
    Bioresour Technol; 2014 Oct; 169():198-205. PubMed ID: 25058294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microalgae-based biodiesel: economic analysis of downstream process realistic scenarios.
    Ríos SD; Torres CM; Torras C; Salvadó J; Mateo-Sanz JM; Jiménez L
    Bioresour Technol; 2013 May; 136():617-25. PubMed ID: 23567739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel production.
    Heimann K
    Curr Opin Biotechnol; 2016 Apr; 38():183-9. PubMed ID: 26953746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodiesel production with microalgae as feedstock: from strains to biodiesel.
    Gong Y; Jiang M
    Biotechnol Lett; 2011 Jul; 33(7):1269-84. PubMed ID: 21380528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene-based catalysts for biodiesel production: Characteristics and performance.
    Nazloo EK; Moheimani NR; Ennaceri H
    Sci Total Environ; 2023 Feb; 859(Pt 1):160000. PubMed ID: 36368383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of KOH/Al2O3 as heterogeneous catalyst for biodiesel production via in situ transesterification from microalgae.
    Ma G; Hu W; Pei H; Jiang L; Ji Y; Mu R
    Environ Technol; 2015; 36(5-8):622-7. PubMed ID: 25220169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microalgae role in sustainable bioenergy generation as determined by light microscopy.
    Abbas M; Shaheen S; Pervaiz M; Jaffer M; Tahir A
    Microsc Res Tech; 2022 May; 85(5):1808-1813. PubMed ID: 34978356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Valorization of de-oiled microalgal biomass as a carbon-based heterogeneous catalyst for a sustainable biodiesel production.
    Roy M; Mohanty K
    Bioresour Technol; 2021 Oct; 337():125424. PubMed ID: 34153868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.