These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 25466998)
41. Effect of biomass pretreatment on the product distribution and composition resulting from the hydrothermal liquefaction of short rotation coppice willow. Grigoras IF; Stroe RE; Sintamarean IM; Rosendahl LA Bioresour Technol; 2017 May; 231():116-123. PubMed ID: 28213311 [TBL] [Abstract][Full Text] [Related]
42. Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae. Hu Y; Feng S; Yuan Z; Xu CC; Bassi A Bioresour Technol; 2017 Sep; 239():151-159. PubMed ID: 28521224 [TBL] [Abstract][Full Text] [Related]
43. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water. Gai C; Li Y; Peng N; Fan A; Liu Z Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472 [TBL] [Abstract][Full Text] [Related]
44. Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds. Sheng L; Wang X; Yang X Bioresour Technol; 2018 Jan; 247():14-20. PubMed ID: 28946088 [TBL] [Abstract][Full Text] [Related]
45. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery. Chen J Bioresour Technol; 2018 Oct; 265():320-327. PubMed ID: 29909362 [TBL] [Abstract][Full Text] [Related]
46. Co-liquefaction of mixed culture microalgal strains under sub-critical water conditions. Dandamudi KPR; Muppaneni T; Sudasinghe N; Schaub T; Holguin FO; Lammers PJ; Deng S Bioresour Technol; 2017 Jul; 236():129-137. PubMed ID: 28399416 [TBL] [Abstract][Full Text] [Related]
47. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Vardon DR; Sharma BK; Scott J; Yu G; Wang Z; Schideman L; Zhang Y; Strathmann TJ Bioresour Technol; 2011 Sep; 102(17):8295-303. PubMed ID: 21741234 [TBL] [Abstract][Full Text] [Related]
48. Single- and two-step hydrothermal liquefaction of microalgae in a semi-continuous reactor: Effect of the operating parameters. Prapaiwatcharapan K; Sunphorka S; Kuchonthara P; Kangvansaichol K; Hinchiranan N Bioresour Technol; 2015 Sep; 191():426-32. PubMed ID: 25913031 [TBL] [Abstract][Full Text] [Related]
49. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction. Cao L; Zhang C; Hao S; Luo G; Zhang S; Chen J Bioresour Technol; 2016 Nov; 220():471-478. PubMed ID: 27611031 [TBL] [Abstract][Full Text] [Related]
50. Hydrothermal upgrading of algae paste in a continuous flow reactor. Patel B; Hellgardt K Bioresour Technol; 2015 Sep; 191():460-8. PubMed ID: 25908412 [TBL] [Abstract][Full Text] [Related]
51. Physical pretreatments of wastewater algae to reduce ash content and improve thermal decomposition characteristics. Chen WT; Ma J; Zhang Y; Gai C; Qian W Bioresour Technol; 2014 Oct; 169():816-820. PubMed ID: 25123982 [TBL] [Abstract][Full Text] [Related]
52. Ni-Ru/CeO Xu D; Guo S; Liu L; Hua H; Guo Y; Wang S; Jing Z Biomed Res Int; 2018; 2018():8376127. PubMed ID: 29854797 [TBL] [Abstract][Full Text] [Related]
53. Hydrothermal Liquefaction of Organic Waste Model Compounds: The Effect of the Heating Rate on Biocrude Yield and Quality from Mixtures of Cellulose-Albumin-Sunflower Oil. Amadei A; Bracciale MP; Damizia M; De Filippis P; de Caprariis B; Ferrasse JH; Scarsella M ACS Omega; 2024 Oct; 9(40):41194-41207. PubMed ID: 39398135 [TBL] [Abstract][Full Text] [Related]
54. Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase. Patel B; Guo M; Chong C; Sarudin SHM; Hellgardt K Sci Total Environ; 2016 Oct; 568():489-497. PubMed ID: 27318079 [TBL] [Abstract][Full Text] [Related]
55. Effects of hydrothermal liquefaction on the fate of bioactive contaminants in manure and algal feedstocks. Pham M; Schideman L; Sharma BK; Zhang Y; Chen WT Bioresour Technol; 2013 Dec; 149():126-35. PubMed ID: 24099971 [TBL] [Abstract][Full Text] [Related]
56. A hydrothermal co-liquefaction of spirulina platensis with rice husk, coconut shell and HDPE for biocrude production. Saral JS; Ranganathan P Bioresour Technol; 2022 Nov; 363():127911. PubMed ID: 36089126 [TBL] [Abstract][Full Text] [Related]
57. Co-liquefaction of micro- and macroalgae in subcritical water. Jin B; Duan P; Xu Y; Wang F; Fan Y Bioresour Technol; 2013 Dec; 149():103-10. PubMed ID: 24096026 [TBL] [Abstract][Full Text] [Related]
58. Low-temperature catalyst based Hydrothermal liquefaction of harmful Macroalgal blooms, and aqueous phase nutrient recycling by microalgae. Kumar V; Kumar S; Chauhan PK; Verma M; Bahuguna V; Joshi HC; Ahmad W; Negi P; Sharma N; Ramola B; Rautela I; Nanda M; Vlaskin MS Sci Rep; 2019 Aug; 9(1):11384. PubMed ID: 31388042 [TBL] [Abstract][Full Text] [Related]
59. Hydrothermal liquefaction of sewage sludge under isothermal and fast conditions. Qian L; Wang S; Savage PE Bioresour Technol; 2017 May; 232():27-34. PubMed ID: 28214442 [TBL] [Abstract][Full Text] [Related]
60. Hydrothermal liquefaction (HTL) of animal by-products: Influence of operating conditions. León M; Marcilla AF; García ÁN Waste Manag; 2019 Nov; 99():49-59. PubMed ID: 31472440 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]