These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 2546735)

  • 81. Effects of 6- and 8-substituted analogs of adenosine 3':5'-monophosphate on phosphoenolpyruvate carboxykinase and tyrosine aminotransferase in hepatoma cell cultures.
    Wagner K; Roper MD; Leichtling BH; Wimalasena J; Wicks WD
    J Biol Chem; 1975 Jan; 250(1):231-9. PubMed ID: 237887
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Nucleotide-induced inhibition of surface sialyl transferase activity on cultured Burkitt's lymphoma cells.
    Kilton LJ; Maca RD
    J Natl Cancer Inst; 1977 May; 58(5):1479-81. PubMed ID: 192903
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The stimulation of the phospholipase A2-acylation system of synaptic membranes of brain by cyclic nucleotides.
    Gullis RJ; Rowe CE
    Biochem J; 1975 Jun; 148(3):567-81. PubMed ID: 173287
    [TBL] [Abstract][Full Text] [Related]  

  • 84. From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications.
    Seifert R; Schneider EH; Bähre H
    Pharmacol Ther; 2015 Apr; 148():154-84. PubMed ID: 25527911
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Nanomolar cyclic adenosine and guanosine monophosphates stimulate macrophage colony-stimulating factor responsiveness by murine transitional progenitors.
    Detrick MS; Kreisberg R; Koontz JW; Moore RN
    J Leukoc Biol; 1992 Sep; 52(3):249-54. PubMed ID: 1326017
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Report on the Third Symposium "cCMP and cUMP as New Second Messengers".
    Schneider EH; Seifert R
    Naunyn Schmiedebergs Arch Pharmacol; 2015 Jan; 388(1):1-3. PubMed ID: 25471064
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The effects of cyclic nucleotides on the proliferation of cultured human T-lymphocytes.
    Maca RD
    Immunopharmacology; 1984 Oct; 8(2):53-60. PubMed ID: 6096309
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Effect of cyclic nucleotides on DNA synthesis in mouse lymphoid cells.
    Diamantstein T; Ulmer A
    Immunol Commun; 1975; 4(1):51-62. PubMed ID: 163786
    [TBL] [Abstract][Full Text] [Related]  

  • 89. [Effect of cyclic nucleotides and hormones of homologous methylation in nuclear homogenates of rat bone marrow].
    Fedorov NA; Ermil'chenko GV
    Biokhimiia; 1980 Jun; 45(6):1048-51. PubMed ID: 6260237
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Effect of synthetic cyclic nucleotides on immunologic histamine release from calf granulocytes.
    Perron RJ; Eyre P
    Can J Physiol Pharmacol; 1979 Nov; 57(11):1316-20. PubMed ID: 93019
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The effect of cyclic nucleotides on tolerance induction by dinitrophenyl-isologous immunoglobulin G.
    Aldo-Benson MA; Watanabe AM
    Immunopharmacology; 1981 Dec; 3(4):299-308. PubMed ID: 6276333
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Sp-5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3',5'-cyclic monophosphorothioate is a potent stimulus for insulin release.
    Laychock SG
    Endocr Res; 1993; 19(2-3):113-22. PubMed ID: 8287829
    [TBL] [Abstract][Full Text] [Related]  

  • 93. cCMP and cUMP Across the Tree of Life: From cCMP and cUMP Generators to cCMP- and cUMP-Regulated Cell Functions.
    Seifert R
    Handb Exp Pharmacol; 2017; 238():3-23. PubMed ID: 28181008
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Oxygen and cyclic nucleotides in human umbilical artery.
    Clyman RI; Blacksin AS; Manganiello VC; Vaughan M
    Proc Natl Acad Sci U S A; 1975 Oct; 72(10):3883-7. PubMed ID: 172888
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages.
    Tal N; Morehouse BR; Millman A; Stokar-Avihail A; Avraham C; Fedorenko T; Yirmiya E; Herbst E; Brandis A; Mehlman T; Oppenheimer-Shaanan Y; Keszei AFA; Shao S; Amitai G; Kranzusch PJ; Sorek R
    Cell; 2021 Nov; 184(23):5728-5739.e16. PubMed ID: 34644530
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Effect of adenosine 3':5'-monophosphate and guanosine 3':5'-monophosphate on RNA release from isolated nuclei.
    Schumm DE; Webb TE
    J Biol Chem; 1978 Dec; 253(23):8513-7. PubMed ID: 213435
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Purine 3':5'-cyclic nucleotides with the nucleobase in a syn orientation: cAMP, cGMP and cIMP.
    Řlepokura KA
    Acta Crystallogr C Struct Chem; 2016 Jun; 72(Pt 6):465-79. PubMed ID: 27256694
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Cyclic adenosine-3',5'-monophosphate and folate transport in rat jejunum.
    Said HM; Strum WB
    Biochem Biophys Res Commun; 1983 Sep; 115(2):756-61. PubMed ID: 6194795
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Modulation of cyclic CMP-specific phosphodiesterase activity by polyamines and by cyclic purine nucleotides.
    Bloch A; Cheng YC
    Adv Enzyme Regul; 1978; 17():283-7. PubMed ID: 230708
    [No Abstract]   [Full Text] [Related]  

  • 100. Derivatives of 1-beta-D-ribofuranosylbenzimidazole 3',5'-phosphate that mimic the actions of adenosine 3',5'-phosphate (cAMP) and guanosine 3',5'-phosphate (cGMP).
    Genieser HG; Winkler E; Butt E; Zorn M; Schulz S; Iwitzki F; Störmann R; Jastorff B; Døskeland SO; Ogreid D
    Carbohydr Res; 1992 Oct; 234():217-35. PubMed ID: 1334800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.