BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25467524)

  • 1. Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study.
    Chen S; Lin X; Zhu C; Liu Q
    J Biomed Opt; 2014 Dec; 19(12):127001. PubMed ID: 25467524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements.
    Chen S; Liu Q
    J Biomed Opt; 2012 Mar; 17(3):030501. PubMed ID: 22502552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical imaging of hemoglobin oxygen saturation using a small number of spectral images for endoscopic application.
    Saito T; Yamaguchi H
    J Biomed Opt; 2015; 20(12):126011. PubMed ID: 26720878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OpenSFDI: an open-source guide for constructing a spatial frequency domain imaging system.
    Applegate M; Karrobi K; Angelo J; Austin W; Tabassum S; Aguénounon E; Tilbury K; Saager R; Gioux S; Roblyer D
    J Biomed Opt; 2020 Jan; 25(1):1-13. PubMed ID: 31925946
    [No Abstract]   [Full Text] [Related]  

  • 5. Validation of optical properties quantification with a dual-step technique for biological tissue analysis.
    Sorgato V; Berger M; Emain C; Vever-Bizet C; Dinten JM; Bourg-Heckly G; Planat-Chrétien A
    J Biomed Opt; 2018 Sep; 23(9):1-14. PubMed ID: 30232845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Transcutaneous Monitoring of Hemoglobin Derivatives Using a Red-Green-Blue Camera-Based Spectral Imaging Technique.
    Khatun F; Aizu Y; Nishidate I
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sampling depth of a diffuse reflectance spectroscopy probe for in-vivo physiological quantification of murine subcutaneous tumor allografts.
    Greening G; Mundo A; Rajaram N; Muldoon TJ
    J Biomed Opt; 2018 Aug; 23(8):1-14. PubMed ID: 30152204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral filtering modulation method for estimation of hemoglobin concentration and oxygenation based on a single fluorescence emission spectrum in tissue phantoms.
    Liu Q; Vo-Dinh T
    Med Phys; 2009 Oct; 36(10):4819-29. PubMed ID: 19928112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy.
    Hennessy R; Goth W; Sharma M; Markey MK; Tunnell JW
    J Biomed Opt; 2014; 19(10):107002. PubMed ID: 25349033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time, wide-field, and quantitative oxygenation imaging using spatiotemporal modulation of light.
    Schmidt M; Aguénounon E; Nahas A; Torregrossa M; Tromberg BJ; Uhring W; Gioux S
    J Biomed Opt; 2019 Mar; 24(7):1-7. PubMed ID: 30868804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning approach for rapid and accurate estimation of optical properties using spatial frequency domain imaging.
    Panigrahi S; Gioux S
    J Biomed Opt; 2018 Dec; 24(7):1-6. PubMed ID: 30550050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling changes in the hemoglobin concentration of skin with total diffuse reflectance spectroscopy.
    Glennie DL; Hayward JE; Farrell TJ
    J Biomed Opt; 2015 Mar; 20(3):035002. PubMed ID: 25751028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vein visualization using a smart phone with multispectral Wiener estimation for point-of-care applications.
    Song JH; Kim C; Yoo Y
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):773-8. PubMed ID: 24691170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain.
    Nadeau KP; Durkin AJ; Tromberg BJ
    J Biomed Opt; 2014 May; 19(5):056013. PubMed ID: 24858131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation.
    Finlay JC; Foster TH
    Med Phys; 2004 Jul; 31(7):1949-59. PubMed ID: 15305445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging.
    Chen S; Wang G; Cui X; Liu Q
    Opt Express; 2017 Jan; 25(2):1005-1018. PubMed ID: 28157982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient estimation of reflectance parameters from imaging spectroscopy.
    Gu L; Robles-Kelly AA; Zhou J
    IEEE Trans Image Process; 2013 Sep; 22(9):3648-63. PubMed ID: 23782809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single snapshot of optical properties image quality improvement using anisotropic two-dimensional windows filtering.
    Aguénounon E; Dadouche F; Uhring W; Gioux S
    J Biomed Opt; 2019 Mar; 24(7):1-21. PubMed ID: 30927346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovering the superficial microvascular pattern via diffuse reflection imaging: phantom validation.
    Chen C; Florian K; Rajesh K; Max R; Christian K; Florian S; Michael S
    Biomed Eng Online; 2015 Sep; 14():87. PubMed ID: 26419826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of layered tissue optical properties from spatial frequency-domain spectroscopy and a deterministic radiative transport solver.
    Horan ST; Gardner AR; Saager R; Durkin AJ; Venugopalan V
    J Biomed Opt; 2018 Nov; 24(7):1-11. PubMed ID: 30456934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.