These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 25467525)

  • 1. Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites.
    Nguyen VQ; Ishihara M; Kinoda J; Hattori H; Nakamura S; Ono T; Miyahira Y; Matsui T
    J Nanobiotechnology; 2014 Dec; 12():49. PubMed ID: 25467525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of Silver Nanoparticles onto Different Surface Structures of Chitin/Chitosan and Correlations with Antimicrobial Activities.
    Ishihara M; Nguyen VQ; Mori Y; Nakamura S; Hattori H
    Int J Mol Sci; 2015 Jun; 16(6):13973-88. PubMed ID: 26096004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver nanoparticles: Antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine.
    Hamed S; Emara M; Shawky RM; El-Domany RA; Youssef T
    J Basic Microbiol; 2017 Aug; 57(8):659-668. PubMed ID: 28543603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-dependent antimicrobial activities of silver nanoparticles.
    Cheon JY; Kim SJ; Rhee YH; Kwon OH; Park WH
    Int J Nanomedicine; 2019; 14():2773-2780. PubMed ID: 31118610
    [No Abstract]   [Full Text] [Related]  

  • 5. Cytotoxicity of Silver Nanoparticle and Chitin-Nanofiber Sheet Composites Caused by Oxidative Stress.
    Kinoda J; Ishihara M; Hattori H; Nakamura S; Fukuda K; Yokoe H
    Nanomaterials (Basel); 2016 Oct; 6(10):. PubMed ID: 28335317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Pot Synthesis of Biocompatible Silver Nanoparticle Composites from Cellulose and Keratin: Characterization and Antimicrobial Activity.
    Tran CD; Prosenc F; Franko M; Benzi G
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34791-34801. PubMed ID: 27998108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.
    Li Z; Zhang M; Cheng D; Yang R
    Carbohydr Polym; 2016 Oct; 151():834-840. PubMed ID: 27474631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems.
    Abdelgawad AM; Hudson SM; Rojas OJ
    Carbohydr Polym; 2014 Jan; 100():166-78. PubMed ID: 24188851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.
    Jung JH; Hwang GB; Lee JE; Bae GN
    Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.
    Ni Z; Wang Z; Sun L; Li B; Zhao Y
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():249-54. PubMed ID: 24907758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial Electrospun Biopolymer Nanofiber Mats Functionalized with Graphene Oxide-Silver Nanocomposites.
    de Faria AF; Perreault F; Shaulsky E; Arias Chavez LH; Elimelech M
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12751-9. PubMed ID: 25980639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity.
    Das MR; Sarma RK; Saikia R; Kale VS; Shelke MV; Sengupta P
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):16-22. PubMed ID: 21109409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles.
    Hussain MA; Shah A; Jantan I; Tahir MN; Shah MR; Ahmed R; Bukhari SN
    J Nanobiotechnology; 2014 Dec; 12():53. PubMed ID: 25468206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.
    Birla SS; Tiwari VV; Gade AK; Ingle AP; Yadav AP; Rai MK
    Lett Appl Microbiol; 2009 Feb; 48(2):173-9. PubMed ID: 19141039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties.
    Mohan S; Oluwafemi OS; George SC; Jayachandran VP; Lewu FB; Songca SP; Kalarikkal N; Thomas S
    Carbohydr Polym; 2014 Jun; 106():469-74. PubMed ID: 24721103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles.
    Kiran Kumar HA; Mandal BK; Mohan Kumar K; Maddinedi Sb; Sai Kumar T; Madhiyazhagan P; Ghosh AR
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():13-8. PubMed ID: 24759779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel.
    Gupta A; Bonde SR; Gaikwad S; Ingle A; Gade AK; Rai M
    IET Nanobiotechnol; 2014 Sep; 8(3):172-8. PubMed ID: 25082226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro antimicrobial and anticancer properties of TiO
    Bonan RF; Mota MF; da Costa Farias RM; da Silva SD; Bonan PRF; Diesel L; Menezes RR; da Cruz Perez DE
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109876. PubMed ID: 31500007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of size-controlled silver nanoparticles and chitosan-based composites and their anti-microbial activities.
    Nguyen VQ; Ishihara M; Mori Y; Nakamura S; Kishimoto S; Fujita M; Hattori H; Kanatani Y; Ono T; Miyahira Y; Matsui T
    Biomed Mater Eng; 2013; 23(6):473-83. PubMed ID: 24165550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Varying the morphology of silver nanoparticles results in differential toxicity against micro-organisms, HaCaT keratinocytes and affects skin deposition.
    Holmes AM; Lim J; Studier H; Roberts MS
    Nanotoxicology; 2016 Dec; 10(10):1503-1514. PubMed ID: 27636544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.