BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 2546772)

  • 1. The pathway of the quinol/quinone transhydrogenation reaction in ubiquinol: cytochrome-c reductase of Neurospora mitochondria.
    Zweck A; Bechmann G; Weiss H
    Eur J Biochem; 1989 Jul; 183(1):199-203. PubMed ID: 2546772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimeric ubiquinol:cytochrome c reductase of Neurospora mitochondria contains one cooperative ubiquinone-reduction centre.
    Linke P; Bechmann G; Gothe A; Weiss H
    Eur J Biochem; 1986 Aug; 158(3):615-21. PubMed ID: 3015618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones.
    Zhu QS; Beattie DS
    J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria.
    Beattie DS; Japa S; Howton M; Zhu QS
    Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of the Q-pool by duroquinol via the two quinone-binding sites of the QH2: cytochrome c oxidoreductase. A model for the equilibrium between cytochrome b-562 and the Q-pool.
    Marres CA; de Vries S
    Biochim Biophys Acta; 1991 Mar; 1057(1):51-63. PubMed ID: 1849003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of ring substituents on the mechanism of interaction of exogenous quinones with the mitochondrial respiratory chain.
    Chen M; Liu BL; Gu LQ; Zhu QS
    Biochim Biophys Acta; 1986 Oct; 851(3):469-74. PubMed ID: 3019395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of exogenous quinones and 2,6-dichlorophenol indophenol in cytochrome b-deficient yeast mitochondria: a differential effect on center i and center o of the cytochrome b-c1 complex.
    Zhu QS; Sprague SG; Beattie DS
    Arch Biochem Biophys; 1988 Sep; 265(2):447-53. PubMed ID: 2844120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of membrane crystals of ubiquinol-cytochrome-c reductase from Neurospora mitochondria and structure analysis by electron microscopy.
    Weiss H; Hovmöller S; Leonard K
    Methods Enzymol; 1986; 126():191-201. PubMed ID: 2856126
    [No Abstract]   [Full Text] [Related]  

  • 11. Non-linear inhibition curves for tight-binding inhibitors of dimeric ubiquinol-cytochrome c oxidoreductases. Evidence for rapid inhibitor mobility.
    Bechmann G; Weiss H; Rich PR
    Eur J Biochem; 1992 Sep; 208(2):315-25. PubMed ID: 1325904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of quinone analogues with wild-type and ubiquinone-deficient yeast mitochondria.
    Zhu QS; Beattie DS
    Biochim Biophys Acta; 1988 Jul; 934(3):303-13. PubMed ID: 2840117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the proton/electron stoichiometry of mitochondrial ubiquinol:cytochrome c reductase by the membrane potential.
    Bechmann G; Weiss H
    Eur J Biochem; 1991 Jan; 195(2):431-8. PubMed ID: 1847681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure of ubiquinol:cytochrome c reductase from Neurospora mitochondria determined by electron microscopy of membrane crystals.
    Leonard K; Wingfield P; Arad T; Weiss H
    J Mol Biol; 1981 Jun; 149(2):259-74. PubMed ID: 6273583
    [No Abstract]   [Full Text] [Related]  

  • 15. Reconstitution of ubiquinol-cytochrome-c reductase from Neurospora mitochondria with regard to subunits I and II.
    Linke P; Weiss H
    Methods Enzymol; 1986; 126():201-10. PubMed ID: 2856127
    [No Abstract]   [Full Text] [Related]  

  • 16. The H+/e- stoicheiometry of respiration-linked proton translocation in the cytochrome system of mitochondria.
    Papa S; Guerrieri F; Lorusso M; Izzo G; Boffoli D; Capuano F; Capitanio N; Altamura N
    Biochem J; 1980 Oct; 192(1):203-18. PubMed ID: 6272694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of the mitochondrial ubiquinol: cytochrome c reductase and NADH: ubiquinone reductase.
    Weiss H; Linke P; Haiker H; Leonard K
    Biochem Soc Trans; 1987 Feb; 15(1):100-2. PubMed ID: 3030833
    [No Abstract]   [Full Text] [Related]  

  • 18. Oxidative interactions between fatty acid peroxy radicals and quinones: possible involvement in cyanide-resistant electron transport in plant mitochondria.
    Rustin P; Dupont J; Lance C
    Arch Biochem Biophys; 1983 Sep; 225(2):630-9. PubMed ID: 6414377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetic mechanism of ubiquinol: cytochrome c reductase at steady state.
    Esposti MD; Lenaz G
    Arch Biochem Biophys; 1991 Sep; 289(2):303-12. PubMed ID: 1654853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myxothiazol resistance in human mitochondria.
    Parker WD; Frerman F; Haas R; Parks JK
    Biochim Biophys Acta; 1988 Oct; 936(1):133-8. PubMed ID: 2846049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.