These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 25467808)
1. Transcriptional response of soybean to thiamethoxam seed treatment in the presence and absence of drought stress. Stamm MD; Enders LS; Donze-Reiner TJ; Baxendale FP; Siegfried BD; Heng-Moss TM BMC Genomics; 2014 Dec; 15(1):1055. PubMed ID: 25467808 [TBL] [Abstract][Full Text] [Related]
2. Impacts of thiamethoxam seed treatment and host plant resistance on the soybean aphid fungal pathogen, Pandora neoaphidis. Koch KA; Ragsdale DW J Econ Entomol; 2011 Dec; 104(6):1824-32. PubMed ID: 22299341 [TBL] [Abstract][Full Text] [Related]
3. Unraveling the effect of structurally different classes of insecticide on germination and early plant growth of soybean [Glycine max (L.) Merr]. Dhungana SK; Kim ID; Kwak HS; Shin DH Pestic Biochem Physiol; 2016 Jun; 130():39-43. PubMed ID: 27155482 [TBL] [Abstract][Full Text] [Related]
4. Assessing the value and pest management window provided by neonicotinoid seed treatments for management of soybean aphid (Aphis glycines Matsumura) in the Upper Midwestern United States. Krupke CH; Alford AM; Cullen EM; Hodgson EW; Knodel JJ; McCornack B; Potter BD; Spigler MI; Tilmon K; Welch K Pest Manag Sci; 2017 Oct; 73(10):2184-2193. PubMed ID: 28459234 [TBL] [Abstract][Full Text] [Related]
5. Changes in light quality alter physiological responses of soybean to thiamethoxam. Kim HW; Amirsadeghi S; McKenzie-Gopsill A; Afifi M; Bozzo G; Lee EA; Lukens L; Swanton CJ Planta; 2016 Sep; 244(3):639-50. PubMed ID: 27114265 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines. Redekar NR; Biyashev RM; Jensen RV; Helm RF; Grabau EA; Maroof MA BMC Genomics; 2015 Dec; 16():1074. PubMed ID: 26678836 [TBL] [Abstract][Full Text] [Related]
7. Thiamethoxam as a seed treatment alters the physiological response of maize (Zea mays) seedlings to neighbouring weeds. Afifi M; Lee E; Lukens L; Swanton C Pest Manag Sci; 2015 Apr; 71(4):505-14. PubMed ID: 24700817 [TBL] [Abstract][Full Text] [Related]
8. Neonicotinoid Insecticides Alter the Transcriptome of Soybean and Decrease Plant Resistance. Wulff JA; Kiani M; Regan K; Eubanks MD; Szczepaniec A Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30759791 [TBL] [Abstract][Full Text] [Related]
9. Systemic effects of thiamethoxam and chlorantraniliprole seed treatments on adult Lissorhoptrus oryzophilus (Coleoptera: Curculionidae) in rice. Lanka SK; Ottea JA; Davis JA; Hernandez AB; Stout MJ Pest Manag Sci; 2013 Feb; 69(2):250-6. PubMed ID: 22927256 [TBL] [Abstract][Full Text] [Related]
10. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. Le DT; Nishiyama R; Watanabe Y; Tanaka M; Seki M; Ham le H; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS PLoS One; 2012; 7(11):e49522. PubMed ID: 23189148 [TBL] [Abstract][Full Text] [Related]
11. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Sun X; Luo X; Sun M; Chen C; Ding X; Wang X; Yang S; Yu Q; Jia B; Ji W; Cai H; Zhu Y Plant Cell Physiol; 2014 Jan; 55(1):99-118. PubMed ID: 24272249 [TBL] [Abstract][Full Text] [Related]
13. Maize (Zea mays) seeds can detect above-ground weeds; thiamethoxam alters the view. Afifi M; Lee E; Lukens L; Swanton C Pest Manag Sci; 2015 Sep; 71(9):1335-45. PubMed ID: 25367862 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome profilling analysis characterized the gene expression patterns responded to combined drought and heat stresses in soybean. Wang L; Liu L; Ma Y; Li S; Dong S; Zu W Comput Biol Chem; 2018 Dec; 77():413-429. PubMed ID: 30476702 [TBL] [Abstract][Full Text] [Related]
15. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. Seiler C; Harshavardhan VT; Rajesh K; Reddy PS; Strickert M; Rolletschek H; Scholz U; Wobus U; Sreenivasulu N J Exp Bot; 2011 May; 62(8):2615-32. PubMed ID: 21289079 [TBL] [Abstract][Full Text] [Related]
16. Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Quain MD; Makgopa ME; Márquez-García B; Comadira G; Fernandez-Garcia N; Olmos E; Schnaubelt D; Kunert KJ; Foyer CH Plant Biotechnol J; 2014 Sep; 12(7):903-13. PubMed ID: 24754628 [TBL] [Abstract][Full Text] [Related]
17. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. Sheteiwy MS; Ali DFI; Xiong YC; Brestic M; Skalicky M; Hamoud YA; Ulhassan Z; Shaghaleh H; AbdElgawad H; Farooq M; Sharma A; El-Sawah AM BMC Plant Biol; 2021 Apr; 21(1):195. PubMed ID: 33888066 [TBL] [Abstract][Full Text] [Related]
18. Susceptibility of Aphelinus certus (Hymenoptera: Aphelinidae) to neonicotinoid seed treatments used for soybean pest management. Frewin AJ; Schaafsma AW; Hallett RH J Econ Entomol; 2014 Aug; 107(4):1450-7. PubMed ID: 25195435 [TBL] [Abstract][Full Text] [Related]
19. A Comparison of transgenic and wild type soybean seeds: analysis of transcriptome profiles using RNA-Seq. Lambirth KC; Whaley AM; Blakley IC; Schlueter JA; Bost KL; Loraine AE; Piller KJ BMC Biotechnol; 2015 Oct; 15():89. PubMed ID: 26427366 [TBL] [Abstract][Full Text] [Related]
20. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. Arraes FB; Beneventi MA; Lisei de Sa ME; Paixao JF; Albuquerque EV; Marin SR; Purgatto E; Nepomuceno AL; Grossi-de-Sa MF BMC Plant Biol; 2015 Sep; 15():213. PubMed ID: 26335593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]