These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 25467859)

  • 1. Modelling the inelastic scattering of fast electrons.
    Allen LJ; D Alfonso AJ; Findlay SD
    Ultramicroscopy; 2015 Apr; 151():11-22. PubMed ID: 25467859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling imaging based on core-loss spectroscopy in scanning transmission electron microscopy.
    Findlay SD; Oxley MP; Pennycook SJ; Allen LJ
    Ultramicroscopy; 2005 Sep; 104(2):126-40. PubMed ID: 15982522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of matrix diagonalization in modelling inelastic electron scattering.
    Lee Z; Hambach R; Kaiser U; Rose H
    Ultramicroscopy; 2017 Apr; 175():58-66. PubMed ID: 28129597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inelastic scattering of low-energy electrons in liquid water computed from optical-data models of the Bethe surface.
    Emfietzoglou D; Kyriakou I; Abril I; Garcia-Molina R; Nikjoo H
    Int J Radiat Biol; 2012 Jan; 88(1-2):22-8. PubMed ID: 21756061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of symmetry in the theory of inelastic high-energy electron scattering and its application to atomic-resolution core-loss imaging.
    Dwyer C
    Ultramicroscopy; 2015 Apr; 151():68-77. PubMed ID: 25541390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pure state decomposition approach of the mixed dynamic form factor for mapping atomic orbitals.
    Löffler S; Motsch V; Schattschneider P
    Ultramicroscopy; 2013 Aug; 131():39-45. PubMed ID: 23685171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image simulation for atomic resolution secondary electron image.
    Wu L; Egerton RF; Zhu Y
    Ultramicroscopy; 2012 Dec; 123():66-73. PubMed ID: 22940532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of a nanoscale coherent helium-ion probe with a crystal.
    D'Alfonso AJ; Forbes BD; Allen LJ
    Ultramicroscopy; 2013 Nov; 134():18-22. PubMed ID: 23876709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Quantification of Heat Generation Due to Inelastic Scattering of Electrons Using a Nanocalorimeter.
    Park J; Bae K; Kim TR; Perez C; Sood A; Asheghi M; Goodson KE; Park W
    Adv Sci (Weinh); 2021 Feb; 8(3):2002876. PubMed ID: 33552867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the role of inelastic scattering in phase-plate transmission electron microscopy.
    Hettler S; Wagner J; Dries M; Oster M; Wacker C; Schröder RR; Gerthsen D
    Ultramicroscopy; 2015 Aug; 155():27-41. PubMed ID: 25879156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is there a Stobbs factor in atomic-resolution STEM-EELS mapping?
    Xin HL; Dwyer C; Muller DA
    Ultramicroscopy; 2014 Apr; 139():38-46. PubMed ID: 24561427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical role of inelastic interactions in quantitative electron microscopy.
    Mkhoyan KA; Maccagnano-Zacher SE; Thomas MG; Silcox J
    Phys Rev Lett; 2008 Jan; 100(2):025503. PubMed ID: 18232885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental study of nanopore drilling by a focused electron beam in transmission electron microscopy.
    Kim HM; Lee MH; Kim KB
    Nanotechnology; 2011 Jul; 22(27):275303. PubMed ID: 21597159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonstandard imaging methods in electron microscopy.
    Rose H
    Ultramicroscopy; 1977 Apr; 2(2-3):251-67. PubMed ID: 888244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum-trajectory Monte Carlo method for study of electron-crystal interaction in STEM.
    Ruan Z; Zeng RG; Ming Y; Zhang M; Da B; Mao SF; Ding ZJ
    Phys Chem Chem Phys; 2015 Jul; 17(27):17628-37. PubMed ID: 26082190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part II: inelastic scattering.
    D'Alfonso AJ; Cosgriff EC; Findlay SD; Behan G; Kirkland AI; Nellist PD; Allen LJ
    Ultramicroscopy; 2008 Nov; 108(12):1567-78. PubMed ID: 18617330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zero-loss image formation and modified contrast transfer theory in EFTEM.
    Angert I; Majorovits E; Schröder RR
    Ultramicroscopy; 2000 Apr; 81(3-4):203-22. PubMed ID: 10782645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Z dependence of electron scattering by single atoms into annular dark-field detectors.
    Treacy MM
    Microsc Microanal; 2011 Dec; 17(6):847-58. PubMed ID: 22051035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the concept of randomness in inelastic electron tunneling excitations.
    Fu Q; Luo Y; Yang J; Hou J
    Phys Chem Chem Phys; 2010 Oct; 12(38):12012-23. PubMed ID: 20714472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling atomic-resolution scanning transmission electron microscopy images.
    Findlay SD; Oxley MP; Allen LJ
    Microsc Microanal; 2008 Feb; 14(1):48-59. PubMed ID: 18096101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.