These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

33 related articles for article (PubMed ID: 25468146)

  • 1. Numerical study and topology optimization of 1D periodic bimaterial phononic crystal plates for bandgaps of low order Lamb waves.
    Hedayatrasa S; Abhary K; Uddin M
    Ultrasonics; 2015 Mar; 57():104-24. PubMed ID: 25468146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Bandgap Properties of a Piezoelectric Phononic Crystal Plate Based on the PDE Module in COMSOL.
    Liu G; Qian D
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable characteristics of low-frequency bandgaps in two-dimensional multivibrator phononic crystal plates under prestrain.
    Zhu HF; Sun XW; Song T; Wen XD; Liu XX; Feng JS; Liu ZJ
    Sci Rep; 2021 Apr; 11(1):8389. PubMed ID: 33863986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Frequency Bandgap Characterization of a Locally Resonant Pentagonal Phononic Crystal Beam Structure.
    Zhang S; Qian D; Zhang Z; Ge H
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double defects-induced elastic wave coupling and energy localization in a phononic crystal.
    Jo SH; Shin YC; Choi W; Yoon H; Youn BD; Kim M
    Nano Converg; 2021 Sep; 8(1):27. PubMed ID: 34529160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling lamb wave propagation in visco-elastic composite plates using a fifth-order plate theory.
    Orta AH; Vandendriessche J; Kersemans M; Van Paepegem W; Roozen NB; Van Den Abeele K
    Ultrasonics; 2021 Sep; 116():106482. PubMed ID: 34102523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Hypersonic Bandgap Formation in Anisotropic Crystals of Dumbbell Nanoparticles.
    Kim H; Gueddida A; Wang Z; Djafari-Rouhani B; Fytas G; Furst EM
    ACS Nano; 2023 Oct; 17(19):19224-19231. PubMed ID: 37756140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadening bandgaps in a multi-resonant piezoelectric metamaterial plate via bandgap merging phenomena.
    Li Y; Liu Z; Zhou H; Yi K; Zhu R
    Sci Rep; 2024 Jul; 14(1):16127. PubMed ID: 38997315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface wave propagation control with locally resonant metasurfaces using topology-optimized resonatorsa).
    Giraldo Guzman D; Pillarisetti LSS; Frecker M; Lissenden CJ; Shokouhi P
    J Acoust Soc Am; 2024 May; 155(5):3172-3182. PubMed ID: 38727552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound transmission loss of periodic Mindlin plates with non-uniformly spaced mass attachmentsa).
    Hall AJ; Sorokin V; Aghamohammadi M; Dodd G; Schmid G; Yang Y; Mace B
    J Acoust Soc Am; 2024 Mar; 155(3):2199-2208. PubMed ID: 38517262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-based phononic crystal lenses: Machine learning-assisted analysis and design.
    Guo L; Zhao S; Yang J; Kitipornchai S
    Ultrasonics; 2024 Mar; 138():107220. PubMed ID: 38118238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel 3D-Printed Negative-Stiffness Lattice Structure with Internal Resonance Characteristics and Tunable Bandgap Properties.
    Liu J; Li S
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral energy scattering and targeted energy transfer in phononic lattices with local vibroimpact nonlinearities.
    Tempelman JR; Vakakis AF; Matlack KH
    Phys Rev E; 2023 Oct; 108(4-1):044214. PubMed ID: 37978658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angle-dependent phononic dynamics for data-driven source localization.
    Wang W; Mokhtari AA; Srivastava A; Amirkhizi AV
    J Acoust Soc Am; 2023 Nov; 154(5):2904-2916. PubMed ID: 37938049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band Gaps and Transmission Characteristics Analysis on a Two-Dimensional Multiple-Scatter Phononic Crystal Structure.
    Xiang H; Ma X; Xiang J
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damage Localization of Composites Based on Difference Signal and Lamb Wave Tomography.
    Su C; Jiang M; Liang J; Tian A; Sun L; Zhang L; Zhang F; Sui Q
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of geometric defects in square locally resonant phononic crystals: A comparative study of modeling approachesa).
    Katch L; Moghaddaszadeh M; Willey CL; Juhl AT; Nouh M; Argüelles AP
    J Acoust Soc Am; 2023 Nov; 154(5):3052-3061. PubMed ID: 37962406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explicit Topology Optimization of Voronoi Foams.
    Li M; Hu J; Chen W; Kong W; Huang J
    IEEE Trans Vis Comput Graph; 2024 Mar; PP():. PubMed ID: 38470605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional optimization of wave barriers for mitigating ground vibrations induced by underground train.
    Sadeghi S; Rafiee-Dehkharghani R; Laknejadi K
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):384-405. PubMed ID: 38015406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introducing Obliquely Perforated Phononic Plates for Enhanced Bandgap Efficiency.
    Hedayatrasa S; Kersemans M; Abhary K; Van Paepegem W
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30060579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.