These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25468348)

  • 21. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulating the formation of keratin filament networks by a piecewise-deterministic Markov process.
    Beil M; Lück S; Fleischer F; Portet S; Arendt W; Schmidt V
    J Theor Biol; 2009 Feb; 256(4):518-32. PubMed ID: 19014958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative analysis of keratin filament networks in scanning electron microscopy images of cancer cells.
    Beil M; Braxmeier H; Fleischer F; Schmidt V; Walther P
    J Microsc; 2005 Nov; 220(Pt 2):84-95. PubMed ID: 16313488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the self-organization property of keratin intermediate filaments.
    Kim JS; Lee CH; Coulombe PA
    Biophys J; 2010 Nov; 99(9):2748-56. PubMed ID: 21044571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determinants of contractile forces generated in disorganized actomyosin bundles.
    Kim T
    Biomech Model Mechanobiol; 2015 Apr; 14(2):345-55. PubMed ID: 25103419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Force Production by a Bundle of Growing Actin Filaments Is Limited by Its Mechanical Properties.
    Martiel JL; Michelot A; Boujemaa-Paterski R; Blanchoin L; Berro J
    Biophys J; 2020 Jan; 118(1):182-192. PubMed ID: 31791547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel mechanism of keratin cytoskeleton organization through casein kinase Iα and FAM83H in colorectal cancer.
    Kuga T; Kume H; Kawasaki N; Sato M; Adachi J; Shiromizu T; Hoshino I; Nishimori T; Matsubara H; Tomonaga T
    J Cell Sci; 2013 Oct; 126(Pt 20):4721-31. PubMed ID: 23902688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Golgi-associated filament networks in duct epithelial cells of rabbit submandibular glands: immunohistochemical light and electron microscopic studies.
    Ogawa C; Iwatsuki H; Suda M; Sasaki K
    Histochem Cell Biol; 2002 Jul; 118(1):35-40. PubMed ID: 12122445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells.
    Beil M; Micoulet A; von Wichert G; Paschke S; Walther P; Omary MB; Van Veldhoven PP; Gern U; Wolff-Hieber E; Eggermann J; Waltenberger J; Adler G; Spatz J; Seufferlein T
    Nat Cell Biol; 2003 Sep; 5(9):803-11. PubMed ID: 12942086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes.
    Russell D; Andrews PD; James J; Lane EB
    J Cell Sci; 2004 Oct; 117(Pt 22):5233-43. PubMed ID: 15454576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of actin filaments to the global compressive properties of fibroblasts.
    Ujihara Y; Nakamura M; Miyazaki H; Wada S
    J Mech Behav Biomed Mater; 2012 Oct; 14():192-8. PubMed ID: 23026698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the significance of microtubule flexural behavior in cytoskeletal mechanics.
    Mehrbod M; Mofrad MR
    PLoS One; 2011; 6(10):e25627. PubMed ID: 21998675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microinjection of monoclonal antibodies specific for one intermediate filament protein in cells containing multiple keratins allow insight into the composition of particular 10 nm filaments.
    Tölle HG; Weber K; Osborn M
    Eur J Cell Biol; 1985 Sep; 38(2):234-44. PubMed ID: 2412818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis.
    Stamenović D; Coughlin MF
    J Theor Biol; 1999 Nov; 201(1):63-74. PubMed ID: 10534436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanics of biological networks: from the cell cytoskeleton to connective tissue.
    Pritchard RH; Huang YY; Terentjev EM
    Soft Matter; 2014 Mar; 10(12):1864-84. PubMed ID: 24652375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural-mechanical integration of keratin intermediate filaments with cell peripheral structures in the cornified epidermal keratinocyte.
    Steinert PM
    Biol Bull; 1998 Jun; 194(3):367-8; discussion 369-70. PubMed ID: 9664665
    [No Abstract]   [Full Text] [Related]  

  • 37. Actin-dependent dynamics of keratin filament precursors.
    Kölsch A; Windoffer R; Leube RE
    Cell Motil Cytoskeleton; 2009 Nov; 66(11):976-85. PubMed ID: 19548319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel electron tomographic methods to study the morphology of keratin filament networks.
    Sailer M; Höhn K; Lück S; Schmidt V; Beil M; Walther P
    Microsc Microanal; 2010 Aug; 16(4):462-71. PubMed ID: 20598205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From branched networks of actin filaments to bundles.
    Brill-Karniely Y; Ideses Y; Bernheim-Groswasser A; Ben-Shaul A
    Chemphyschem; 2009 Nov; 10(16):2818-27. PubMed ID: 19847840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanics of bundled semiflexible polymer networks.
    Lieleg O; Claessens MM; Heussinger C; Frey E; Bausch AR
    Phys Rev Lett; 2007 Aug; 99(8):088102. PubMed ID: 17930985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.