These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2546843)

  • 1. Influence of insulin on phosphate uptake by brush border membranes from human placenta.
    Brunette MG; Leclerc M; Ramachandran C; Lafond J; Lajeunesse D
    Mol Cell Endocrinol; 1989 May; 63(1-2):57-65. PubMed ID: 2546843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of parathyroid hormone on PO4 transport through the human placenta microvilli.
    Brunette MG; Auger D; Lafond J
    Pediatr Res; 1989 Jan; 25(1):15-8. PubMed ID: 2537487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+ transport by human placental brush border membranes: are there several mechanisms?
    Brunette MG; Leclerc ; Claveau D
    J Cell Physiol; 1996 Apr; 167(1):72-80. PubMed ID: 8698842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of insulin on D-glucose transport by human placental brush border membranes.
    Brunette MG; Lajeunesse D; Leclerc M; Lafond J
    Mol Cell Endocrinol; 1990 Feb; 69(1):59-68. PubMed ID: 2182358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate uptake by syncytial brush border membranes of human placenta.
    Brunette MG; Allard S
    Pediatr Res; 1985 Nov; 19(11):1179-82. PubMed ID: 4069827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium gradient-dependent phosphate transport in placental brush border membrane vesicles.
    Lajeunesse D; Brunette MG
    Placenta; 1988; 9(2):117-28. PubMed ID: 3399488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of parathyroid hormone on Na+-dependent phosphate transport and cAMP-dependent 32P phosphorylation in brush border vesicles from isolated perfused canine kidneys.
    Hammerman MR; Cohn DE; Tamayo J; Martin KJ
    Arch Biochem Biophys; 1983 Nov; 227(1):91-7. PubMed ID: 6314912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study on the mechanism of placental transport of phosphate (using human placental microvillous (brush border) membrane vesicles)].
    Iioka H; Moriyama I; Amasaki M; Itoh K; Hino K; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1985 Dec; 37(12):2675-80. PubMed ID: 4086899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro phosphorylation of rat kidney proximal tubular brush border membranes.
    Biber J; Scalera V; Murer H
    Ren Physiol; 1985; 8(1):19-29. PubMed ID: 2982202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of parathyroid hormone (PTH) and dietary phosphate on the sodium-dependent phosphate transport system located in the rat renal brush border membrane.
    Murer H; Evers C; Stoll R; Kinne R
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():455-62. PubMed ID: 211000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of the microvillus brush border of human placenta: insulin receptor localization in brush border membranes.
    Whitsett JA; Lessard JL
    Endocrinology; 1978 Oct; 103(4):1458-68. PubMed ID: 758022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal brush border membrane phosphorylation: influence of pH, cAMP and ATP concentrations, parathyroid hormone status, and dietary phosphate.
    Brunette MG; Allard S
    Can J Physiol Pharmacol; 1985 Nov; 63(11):1362-9. PubMed ID: 3000557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD+-induced inhibition of phosphate transport in canine renal brush-border membranes. Mediation through a process other than or in addition to NAD+ hydrolysis.
    Hammerman MR; Corpus VM; Morrissey JJ
    Biochim Biophys Acta; 1983 Jul; 732(1):110-6. PubMed ID: 6871184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human placental L-tyrosine transport: a comparison of brush-border and basal membrane vesicles.
    Kudo Y; Boyd CA
    J Physiol; 1990 Jul; 426():381-95. PubMed ID: 2231404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-H+ exchanger of human placental brush-border membrane: identification and characterization.
    Balkovetz DF; Leibach FH; Mahesh VB; Devoe LD; Cragoe EJ; Ganapathy V
    Am J Physiol; 1986 Dec; 251(6 Pt 1):C852-60. PubMed ID: 3024497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH on the kinetics of Na+-dependent phosphate transport in rat renal brush-border membranes.
    Bindels RJ; van den Broek LA; van Os CH
    Biochim Biophys Acta; 1987 Feb; 897(1):83-92. PubMed ID: 3099845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of renal brush border phosphate transport and stimulation of renal gluconeogenesis by cyclic amp and parathyroid hormone.
    Kempson SA; Kowalski JC; Puschett JB
    Biochem Pharmacol; 1983 May; 32(9):1533-7. PubMed ID: 6305371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choline transport in human placental brush-border membrane vesicles.
    Grassl SM
    Biochim Biophys Acta; 1994 Aug; 1194(1):203-13. PubMed ID: 8075137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of parathyroid hormone, cyclic AMP and Ca2+ on the phosphorylation of brush border membranes in rabbit kidney.
    Takenawa T; Wada E; Tsumita T; Masaki T; Filburn CR; Sacktor B
    Miner Electrolyte Metab; 1984; 10(2):103-12. PubMed ID: 6321935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulphydryl modification inhibits taurine transport in human placental brush border membranes.
    Dumaswala R; Brown TL
    Placenta; 1996; 17(5-6):329-36. PubMed ID: 8829216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.