These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25468592)

  • 1. Low complexity and disordered regions of proteins have different structural and amino acid preferences.
    Kumari B; Kumar R; Kumar M
    Mol Biosyst; 2015 Feb; 11(2):585-94. PubMed ID: 25468592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low Complexity Induces Structure in Protein Regions Predicted as Intrinsically Disordered.
    Gonçalves-Kulik M; Mier P; Kastano K; Cortés J; Bernadó P; Schmid F; Andrade-Navarro MA
    Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36008992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low complexity regions (LCRs) contribute to the hypervariability of the HIV-1 gp120 protein.
    María Velasco A; Becerra A; Hernández-Morales R; Delaye L; Jiménez-Corona ME; Ponce-de-Leon S; Lazcano A
    J Theor Biol; 2013 Dec; 338():80-6. PubMed ID: 24021867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic disorder in the Protein Data Bank.
    Le Gall T; Romero PR; Cortese MS; Uversky VN; Dunker AK
    J Biomol Struct Dyn; 2007 Feb; 24(4):325-42. PubMed ID: 17206849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural divergence is more extensive than sequence divergence for a family of intrinsically disordered proteins.
    Borcherds W; Kashtanov S; Wu H; Daughdrill GW
    Proteins; 2013 Oct; 81(10):1686-98. PubMed ID: 23606624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-complexity regions within protein sequences have position-dependent roles.
    Coletta A; Pinney JW; Solís DY; Marsh J; Pettifer SR; Attwood TK
    BMC Syst Biol; 2010 Apr; 4():43. PubMed ID: 20385029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW; Eisenberg D
    J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disentangling the complexity of low complexity proteins.
    Mier P; Paladin L; Tamana S; Petrosian S; Hajdu-Soltész B; Urbanek A; Gruca A; Plewczynski D; Grynberg M; Bernadó P; Gáspári Z; Ouzounis CA; Promponas VJ; Kajava AV; Hancock JM; Tosatto SCE; Dosztanyi Z; Andrade-Navarro MA
    Brief Bioinform; 2020 Mar; 21(2):458-472. PubMed ID: 30698641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein expansion is primarily due to indels in intrinsically disordered regions.
    Light S; Sagit R; Sachenkova O; Ekman D; Elofsson A
    Mol Biol Evol; 2013 Dec; 30(12):2645-53. PubMed ID: 24037790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. II. Secondary structures.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):693-708. PubMed ID: 8182744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of proteins inducing liquid-liquid phase separation: sequential, structural and functional characterization.
    Ozawa Y; Anbo H; Ota M; Fukuchi S
    J Biochem; 2023 Mar; 173(4):255-264. PubMed ID: 36575582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsically unstructured proteins by design-electrostatic interactions can control binding, folding, and function of a helix-loop-helix heterodimer.
    Rydberg J; Baltzer L; Sarojini V
    J Pept Sci; 2013 Aug; 19(8):461-9. PubMed ID: 23813758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation.
    Serrano L
    J Mol Biol; 1995 Nov; 254(2):322-33. PubMed ID: 7490751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On predicting foldability of a protein from its sequence.
    Mezei M
    Proteins; 2020 Feb; 88(2):355-365. PubMed ID: 31479556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):682-92. PubMed ID: 8182743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random coil structures in bacterial proteins. Relationships of their amino acid compositions to flanking structures and corresponding genic base compositions.
    Khrustalev VV; Khrustaleva TA; Barkovsky EV
    Biochimie; 2013 Sep; 95(9):1745-54. PubMed ID: 23764391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsically disordered proteins and intrinsically disordered protein regions.
    Oldfield CJ; Dunker AK
    Annu Rev Biochem; 2014; 83():553-84. PubMed ID: 24606139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural protein sequences are more intrinsically disordered than random sequences.
    Yu JF; Cao Z; Yang Y; Wang CL; Su ZD; Zhao YW; Wang JH; Zhou Y
    Cell Mol Life Sci; 2016 Aug; 73(15):2949-57. PubMed ID: 26801222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical and sequence characteristics of alpha-helices in globular proteins.
    Kumar S; Bansal M
    Biophys J; 1998 Oct; 75(4):1935-44. PubMed ID: 9746534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PlaToLoCo: the first web meta-server for visualization and annotation of low complexity regions in proteins.
    Jarnot P; Ziemska-Legiecka J; Dobson L; Merski M; Mier P; Andrade-Navarro MA; Hancock JM; Dosztányi Z; Paladin L; Necci M; Piovesan D; Tosatto SCE; Promponas VJ; Grynberg M; Gruca A
    Nucleic Acids Res; 2020 Jul; 48(W1):W77-W84. PubMed ID: 32421769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.