These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25468609)

  • 1. Microfluidic model of angiogenic sprouting.
    Song JW; Bazou D; Munn LL
    Methods Mol Biol; 2015; 1214():243-54. PubMed ID: 25468609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform.
    Jeong GS; Han S; Shin Y; Kwon GH; Kamm RD; Lee SH; Chung S
    Anal Chem; 2011 Nov; 83(22):8454-9. PubMed ID: 21985643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform.
    van Duinen V; Zhu D; Ramakers C; van Zonneveld AJ; Vulto P; Hankemeier T
    Angiogenesis; 2019 Feb; 22(1):157-165. PubMed ID: 30171498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients.
    Baker BM; Trappmann B; Stapleton SC; Toro E; Chen CS
    Lab Chip; 2013 Aug; 13(16):3246-52. PubMed ID: 23787488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging.
    Vickerman V; Blundo J; Chung S; Kamm R
    Lab Chip; 2008 Sep; 8(9):1468-77. PubMed ID: 18818801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RhoA mediates flow-induced endothelial sprouting in a 3-D tissue analogue of angiogenesis.
    Song JW; Daubriac J; Tse JM; Bazou D; Munn LL
    Lab Chip; 2012 Dec; 12(23):5000-6. PubMed ID: 23073300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis.
    Lam RH; Sun Y; Chen W; Fu J
    Lab Chip; 2012 Apr; 12(10):1865-73. PubMed ID: 22437210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro.
    Nguyen DH; Stapleton SC; Yang MT; Cha SS; Choi CK; Galie PA; Chen CS
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6712-7. PubMed ID: 23569284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model.
    Kim S; Chung M; Ahn J; Lee S; Jeon NL
    Lab Chip; 2016 Oct; 16(21):4189-4199. PubMed ID: 27722679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems.
    Kuzmic N; Moore T; Devadas D; Young EWK
    Biomech Model Mechanobiol; 2019 Jun; 18(3):717-731. PubMed ID: 30604299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanografted Substrata and Triculture of Human Pericytes, Fibroblasts, and Endothelial Cells for Studying the Effects on Angiogenesis.
    Kim TH; Kim SH; Leong KW; Jung Y
    Tissue Eng Part A; 2016 Apr; 22(7-8):698-706. PubMed ID: 27019156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The coculture organotypic assay of angiogenesis.
    Allen JL; Mellor H
    Methods Mol Biol; 2015; 1214():265-70. PubMed ID: 25468611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis.
    Song JW; Bazou D; Munn LL
    Integr Biol (Camb); 2012 Aug; 4(8):857-62. PubMed ID: 22673771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional in vitro assay of endothelial cell invasion and capillary tube morphogenesis.
    di Blasio L; Bussolino F; Primo L
    Methods Mol Biol; 2015; 1214():41-7. PubMed ID: 25468598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A palmtop-sized microfluidic cell culture system driven by a miniaturized infusion pump.
    Sasaki N; Shinjo M; Hirakawa S; Nishinaka M; Tanaka Y; Mawatari K; Kitamori T; Sato K
    Electrophoresis; 2012 Jul; 33(12):1729-35. PubMed ID: 22740461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations.
    Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC
    Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A contact line pinning based microfluidic platform for modelling physiological flows.
    Tung CK; Krupa O; Apaydin E; Liou JJ; Diaz-Santana A; Kim BJ; Wu M
    Lab Chip; 2013 Oct; 13(19):3876-85. PubMed ID: 23917952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ measurement of cellular microenvironments in a microfluidic device.
    Lin Z; Cherng-Wen T; Roy P; Trau D
    Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using microfluidics to investigate hematopoietic stem cell and microniche interactions at the single cell level.
    Ahn B; Wang Z; Archer DR; Lam WA
    Methods Mol Biol; 2014; 1185():223-33. PubMed ID: 25062632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Standardization of microfluidic cell cultures using integrated organic photodiodes and electrode arrays.
    Charwat V; Purtscher M; Tedde SF; Hayden O; Ertl P
    Lab Chip; 2013 Mar; 13(5):785-97. PubMed ID: 23254868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.