These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 25468609)
21. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368 [TBL] [Abstract][Full Text] [Related]
22. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Leclerc E; Sakai Y; Fujii T Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878 [TBL] [Abstract][Full Text] [Related]
23. Artificial Vascular with Pressure-Responsive Property based on Deformable Microfluidic Channels. Chen Z; Fan L; Chen S; Zhao H; Zhang Q; Qu Y; Huang Y; Yu X; Sun D Adv Healthc Mater; 2024 Aug; 13(20):e2304532. PubMed ID: 38533604 [TBL] [Abstract][Full Text] [Related]
24. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707 [TBL] [Abstract][Full Text] [Related]
25. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function. Hattori K; Munehira Y; Kobayashi H; Satoh T; Sugiura S; Kanamori T J Biosci Bioeng; 2014 Sep; 118(3):327-32. PubMed ID: 24630614 [TBL] [Abstract][Full Text] [Related]
26. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system. Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256 [TBL] [Abstract][Full Text] [Related]
27. Investigating human vascular tube morphogenesis and maturation using endothelial cell-pericyte co-cultures and a doxycycline-inducible genetic system in 3D extracellular matrices. Bowers SL; Meng CX; Davis MT; Davis GE Methods Mol Biol; 2015; 1189():171-89. PubMed ID: 25245694 [TBL] [Abstract][Full Text] [Related]
28. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711 [TBL] [Abstract][Full Text] [Related]
29. Biological applications of microfluidic gradient devices. Kim S; Kim HJ; Jeon NL Integr Biol (Camb); 2010 Nov; 2(11-12):584-603. PubMed ID: 20957276 [TBL] [Abstract][Full Text] [Related]
30. Quantitative study of the dynamic tumor-endothelial cell interactions through an integrated microfluidic coculture system. Zheng C; Zhao L; Chen G; Zhou Y; Pang Y; Huang Y Anal Chem; 2012 Feb; 84(4):2088-93. PubMed ID: 22263607 [TBL] [Abstract][Full Text] [Related]
31. Three-dimensional extracellular matrix-mediated neural stem cell differentiation in a microfluidic device. Han S; Yang K; Shin Y; Lee JS; Kamm RD; Chung S; Cho SW Lab Chip; 2012 Jul; 12(13):2305-8. PubMed ID: 22622966 [TBL] [Abstract][Full Text] [Related]
32. A stochastic broadcast feedback approach to regulating cell population morphology for microfluidic angiogenesis platforms. Wood LB; Das A; Kamm RD; Asada HH IEEE Trans Biomed Eng; 2009 Sep; 56(9):2299-303. PubMed ID: 19622435 [TBL] [Abstract][Full Text] [Related]
33. Dynamic control of extracellular environment in in vitro neural recording systems. Pearce TM; Williams JJ; Kruzel SP; Gidden MJ; Williams JC IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):207-12. PubMed ID: 16003901 [TBL] [Abstract][Full Text] [Related]
34. Scalable alignment of three-dimensional cellular constructs in a microfluidic chip. Anene-Nzelu CG; Peh KY; Fraiszudeen A; Kuan YH; Ng SH; Toh YC; Leo HL; Yu H Lab Chip; 2013 Oct; 13(20):4124-33. PubMed ID: 23969512 [TBL] [Abstract][Full Text] [Related]
35. Hydrophilic electrospun polyurethane nanofiber matrices for hMSC culture in a microfluidic cell chip. Lee KH; Kwon GH; Shin SJ; Baek JY; Han DK; Park Y; Lee SH J Biomed Mater Res A; 2009 Aug; 90(2):619-28. PubMed ID: 18546183 [TBL] [Abstract][Full Text] [Related]
36. How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Pavesi A; Piraino F; Fiore GB; Farino KM; Moretti M; Rasponi M Lab Chip; 2011 May; 11(9):1593-5. PubMed ID: 21437315 [TBL] [Abstract][Full Text] [Related]
37. An integrated microfluidic cell culture system for high-throughput perfusion three-dimensional cell culture-based assays: effect of cell culture model on the results of chemosensitivity assays. Huang SB; Wang SS; Hsieh CH; Lin YC; Lai CS; Wu MH Lab Chip; 2013 Mar; 13(6):1133-43. PubMed ID: 23353927 [TBL] [Abstract][Full Text] [Related]
38. Characterization of in vitro endothelial linings grown within microfluidic channels. Esch MB; Post DJ; Shuler ML; Stokol T Tissue Eng Part A; 2011 Dec; 17(23-24):2965-71. PubMed ID: 21895486 [TBL] [Abstract][Full Text] [Related]
39. Microfluidic approaches to the study of angiogenesis and the microcirculation. Akbari E; Spychalski GB; Song JW Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28182312 [TBL] [Abstract][Full Text] [Related]
40. Probing blood cell mechanics of hematologic processes at the single micron level. Ciciliano JC; Abbaspour R; Woodall J; Wu C; Bakir MS; Lam WA Lab Chip; 2017 Nov; 17(22):3804-3816. PubMed ID: 29052682 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]