These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 25468609)
41. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions. Chen MB; Srigunapalan S; Wheeler AR; Simmons CA Lab Chip; 2013 Jul; 13(13):2591-8. PubMed ID: 23525275 [TBL] [Abstract][Full Text] [Related]
42. Matrix density alters zyxin phosphorylation, which limits peripheral process formation and extension in endothelial cells invading 3D collagen matrices. Abbey CA; Bayless KJ Matrix Biol; 2014 Sep; 38():36-47. PubMed ID: 25038525 [TBL] [Abstract][Full Text] [Related]
43. On-chip CO2 control for microfluidic cell culture. Forry SP; Locascio LE Lab Chip; 2011 Dec; 11(23):4041-6. PubMed ID: 21996787 [TBL] [Abstract][Full Text] [Related]
44. An easy-to-handle microfluidic device suitable for immunohistochemical procedures in mammalian cells grown under flow conditions. Fede C; Fortunati I; Petrelli L; Guidolin D; De Caro R; Ferrante C; Albertin G Eur J Histochem; 2014 May; 58(2):2360. PubMed ID: 24998924 [TBL] [Abstract][Full Text] [Related]
45. Elastomeric microvalves as tunable nanochannels for concentration polarization. Quist J; Trietsch SJ; Vulto P; Hankemeier T Lab Chip; 2013 Dec; 13(24):4810-5. PubMed ID: 24158567 [TBL] [Abstract][Full Text] [Related]
46. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions. Raasch M; Rennert K; Jahn T; Peters S; Henkel T; Huber O; Schulz I; Becker H; Lorkowski S; Funke H; Mosig A Biofabrication; 2015 Mar; 7(1):015013. PubMed ID: 25727374 [TBL] [Abstract][Full Text] [Related]
47. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells. Lee JM; Kim JE; Kang E; Lee SH; Chung BG Electrophoresis; 2011 Nov; 32(22):3133-7. PubMed ID: 22102496 [TBL] [Abstract][Full Text] [Related]
48. Control of sequential fluid delivery in a fully autonomous capillary microfluidic device. Novo P; Volpetti F; Chu V; Conde JP Lab Chip; 2013 Feb; 13(4):641-5. PubMed ID: 23263650 [TBL] [Abstract][Full Text] [Related]
49. Engineering of functional, perfusable 3D microvascular networks on a chip. Kim S; Lee H; Chung M; Jeon NL Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068 [TBL] [Abstract][Full Text] [Related]
50. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728 [TBL] [Abstract][Full Text] [Related]
51. Development of disposable PDMS micro cell culture analog devices with photopolymerizable hydrogel encapsulating living cells. Xu H; Wu J; Chu CC; Shuler ML Biomed Microdevices; 2012 Apr; 14(2):409-18. PubMed ID: 22160484 [TBL] [Abstract][Full Text] [Related]
52. The activation of RhoC in vascular endothelial cells is required for the S1P receptor type 2-induced inhibition of angiogenesis. Del Galdo S; Vettel C; Heringdorf DM; Wieland T Cell Signal; 2013 Dec; 25(12):2478-84. PubMed ID: 23993968 [TBL] [Abstract][Full Text] [Related]
53. In vitro angiogenesis assay for the study of cell-encapsulation therapy. Kim C; Chung S; Yuchun L; Kim MC; Chan JK; Asada HH; Kamm RD Lab Chip; 2012 Aug; 12(16):2942-50. PubMed ID: 22722695 [TBL] [Abstract][Full Text] [Related]
54. Endothelial cell polarization and chemotaxis in a microfluidic device. Shamloo A; Ma N; Poo MM; Sohn LL; Heilshorn SC Lab Chip; 2008 Aug; 8(8):1292-9. PubMed ID: 18651071 [TBL] [Abstract][Full Text] [Related]
55. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Chung S; Sudo R; Mack PJ; Wan CR; Vickerman V; Kamm RD Lab Chip; 2009 Jan; 9(2):269-75. PubMed ID: 19107284 [TBL] [Abstract][Full Text] [Related]
56. Generating multiplex gradients of biomolecules for controlling cellular adhesion in parallel microfluidic channels. Didar TF; Tabrizian M Lab Chip; 2012 Nov; 12(21):4363-71. PubMed ID: 22907392 [TBL] [Abstract][Full Text] [Related]
57. Microfluidic systems for live cell imaging. Lee P; Gaige T; Hung P Methods Cell Biol; 2011; 102():77-103. PubMed ID: 21704836 [TBL] [Abstract][Full Text] [Related]
58. Microfluidic Assay To Study the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration. Menon NV; Chuah YJ; Phey S; Zhang Y; Wu Y; Chan V; Kang Y ACS Appl Mater Interfaces; 2015 Aug; 7(31):17095-103. PubMed ID: 26186177 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of gold nanoparticles toxicity towards human endothelial cells under static and flow conditions. Fede C; Fortunati I; Weber V; Rossetto N; Bertasi F; Petrelli L; Guidolin D; Signorini R; De Caro R; Albertin G; Ferrante C Microvasc Res; 2015 Jan; 97():147-55. PubMed ID: 25446009 [TBL] [Abstract][Full Text] [Related]
60. Development of a novel microfluidic device for long-term in situ monitoring of live cells in 3-dimensional matrices. DĂ„nmark S; Gladnikoff M; Frisk T; Zelenina M; Mustafa K; Russom A; Finne-Wistrand A Biomed Microdevices; 2012 Oct; 14(5):885-93. PubMed ID: 22714394 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]