These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 25468785)

  • 1. High affinity hemoglobin and Parkinson's disease.
    Graham J; Hobson D; Ponnampalam A
    Med Hypotheses; 2014 Dec; 83(6):819-21. PubMed ID: 25468785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can mesenchymal stem cells reduce vulnerability of dopaminergic neurons in the substantia nigra to oxidative insult in individuals at risk to Parkinson's disease?
    Datta I; Bhonde R
    Cell Biol Int; 2012 Jul; 36(7):617-24. PubMed ID: 22417707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.
    Perier C; Bender A; García-Arumí E; Melià MJ; Bové J; Laub C; Klopstock T; Elstner M; Mounsey RB; Teismann P; Prolla T; Andreu AL; Vila M
    Brain; 2013 Aug; 136(Pt 8):2369-78. PubMed ID: 23884809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson's disease: a case for the selective vulnerability of the substantia nigra.
    Galvin JE
    Acta Neuropathol; 2006 Aug; 112(2):115-26. PubMed ID: 16791599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal vulnerability in Parkinson's disease.
    Double KL
    Parkinsonism Relat Disord; 2012 Jan; 18 Suppl 1():S52-4. PubMed ID: 22166454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons.
    Zhang J; Perry G; Smith MA; Robertson D; Olson SJ; Graham DG; Montine TJ
    Am J Pathol; 1999 May; 154(5):1423-9. PubMed ID: 10329595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopaminergic neurons.
    Chinta SJ; Andersen JK
    Int J Biochem Cell Biol; 2005 May; 37(5):942-6. PubMed ID: 15743669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease.
    Anglade P; Vyas S; Javoy-Agid F; Herrero MT; Michel PP; Marquez J; Mouatt-Prigent A; Ruberg M; Hirsch EC; Agid Y
    Histol Histopathol; 1997 Jan; 12(1):25-31. PubMed ID: 9046040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AAV.shRNA-mediated downregulation of ROCK2 attenuates degeneration of dopaminergic neurons in toxin-induced models of Parkinson's disease in vitro and in vivo.
    Saal KA; Koch JC; Tatenhorst L; Szegő EM; Ribas VT; Michel U; Bähr M; Tönges L; Lingor P
    Neurobiol Dis; 2015 Jan; 73():150-62. PubMed ID: 25283984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium channels and their emerging role in parkinson's disease.
    Zhang L; Zheng Y; Xie J; Shi L
    Brain Res Bull; 2020 Jul; 160():1-7. PubMed ID: 32305406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEP-1-heat shock protein 27 protects from neuronal damage in cells and in a Parkinson's disease mouse model.
    Lee YP; Kim DW; Kang HW; Hwang JH; Jeong HJ; Sohn EJ; Kim MJ; Ahn EH; Shin MJ; Kim DS; Kang TC; Kwon OS; Cho SW; Park J; Eum WS; Choi SY
    FEBS J; 2012 Jun; 279(11):1929-42. PubMed ID: 22429328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transcription factor Pitx3 is expressed selectively in midbrain dopaminergic neurons susceptible to neurodegenerative stress.
    Luk KC; Rymar VV; van den Munckhof P; Nicolau S; Steriade C; Bifsha P; Drouin J; Sadikot AF
    J Neurochem; 2013 Jun; 125(6):932-43. PubMed ID: 23331067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential modification of dopamine transporter and tyrosine hydroxylase mRNAs in midbrain of subjects with Parkinson's, Alzheimer's with parkinsonism, and Alzheimer's disease.
    Joyce JN; Smutzer G; Whitty CJ; Myers A; Bannon MJ
    Mov Disord; 1997 Nov; 12(6):885-97. PubMed ID: 9399211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease.
    Yamada M; Iwatsubo T; Mizuno Y; Mochizuki H
    J Neurochem; 2004 Oct; 91(2):451-61. PubMed ID: 15447678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glial reactions in Parkinson's disease.
    McGeer PL; McGeer EG
    Mov Disord; 2008 Mar; 23(4):474-83. PubMed ID: 18044695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of iron in senescence of dopaminergic neurons in Parkinson's disease.
    Youdim MB; Riederer P
    J Neural Transm Suppl; 1993; 40():57-67. PubMed ID: 8294901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of alpha-synuclein in the substantia nigra.
    von Bohlen und Halbach O; Minichiello L; Unsicker K
    FASEB J; 2005 Oct; 19(12):1740-2. PubMed ID: 16037097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson's disease.
    Pérez-H J; Carrillo-S C; García E; Ruiz-Mar G; Pérez-Tamayo R; Chavarría A
    Toxicology; 2014 May; 319():38-43. PubMed ID: 24607817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopaminergic neurons reduced to silence by oxidative stress: an early step in the death cascade in Parkinson's disease?
    Michel PP; Ruberg M; Hirsch E
    Sci STKE; 2006 Apr; 2006(332):pe19. PubMed ID: 16639033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEP-1-ribosomal protein S3 protects dopaminergic neurons in an MPTP-induced Parkinson's disease mouse model.
    Ahn EH; Kim DW; Shin MJ; Kim YN; Kim HR; Woo SJ; Kim SM; Kim DS; Kim J; Park J; Eum WS; Hwang HS; Choi SY
    Free Radic Biol Med; 2013 Feb; 55():36-45. PubMed ID: 23178948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.