These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25468982)

  • 1. van der Waals interactions at the nanoscale: the effects of nonlocality.
    Luo Y; Zhao R; Pendry JB
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18422-7. PubMed ID: 25468982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Description of van der Waals interactions using transformation optics.
    Zhao R; Luo Y; Fernández-Domínguez AI; Pendry JB
    Phys Rev Lett; 2013 Jul; 111(3):033602. PubMed ID: 23909317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging.
    Hu D; Yang X; Li C; Liu R; Yao Z; Hu H; Corder SNG; Chen J; Sun Z; Liu M; Dai Q
    Nat Commun; 2017 Nov; 8(1):1471. PubMed ID: 29133779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlocal study of ultimate plasmon hybridization.
    Raza S; Wubs M; Bozhevolnyi SI; Mortensen NA
    Opt Lett; 2015 Mar; 40(5):839-42. PubMed ID: 25723446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlayer Interactions in van der Waals Heterostructures: Electron and Phonon Properties.
    Le NB; Huan TD; Woods LM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6286-92. PubMed ID: 26885874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface nano-optics with van der Waals polaritons.
    Zhang Q; Hu G; Ma W; Li P; Krasnok A; Hillenbrand R; Alù A; Qiu CW
    Nature; 2021 Sep; 597(7875):187-195. PubMed ID: 34497390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelike charge density fluctuations and van der Waals interactions at the nanoscale.
    Ambrosetti A; Ferri N; DiStasio RA; Tkatchenko A
    Science; 2016 Mar; 351(6278):1171-6. PubMed ID: 26965622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions.
    Li Y; Kim HI; Wei B; Kang J; Choi JB; Nam JD; Suhr J
    Nanoscale; 2015 Sep; 7(34):14299-304. PubMed ID: 26242771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure.
    Alcaraz Iranzo D; Nanot S; Dias EJC; Epstein I; Peng C; Efetov DK; Lundeberg MB; Parret R; Osmond J; Hong JY; Kong J; Englund DR; Peres NMR; Koppens FHL
    Science; 2018 Apr; 360(6386):291-295. PubMed ID: 29674587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation-optics description of nonlocal effects in plasmonic nanostructures.
    Fernández-Domínguez AI; Wiener A; García-Vidal FJ; Maier SA; Pendry JB
    Phys Rev Lett; 2012 Mar; 108(10):106802. PubMed ID: 22463438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative interplay of van der Waals forces and quantum nuclear effects on adsorption: H at graphene and at coronene.
    Davidson ER; Klimeš J; Alfè D; Michaelides A
    ACS Nano; 2014 Oct; 8(10):9905-13. PubMed ID: 25300825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlocal Static and Dynamical Vacuum Field Correlations and Casimir-Polder Interactions.
    Passante R; Rizzuto L
    Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computing van der Waals energies in the context of the rotamer approximation.
    Grigoryan G; Ochoa A; Keating AE
    Proteins; 2007 Sep; 68(4):863-78. PubMed ID: 17554777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superattraction mediated by quantum fluctuations of plasmon quasi-continuum.
    Andrianov ES; Chtchelkatchev NM; Pukhov AA
    Opt Lett; 2015 May; 40(9):2056-9. PubMed ID: 25927783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Van der waals coefficients for nanostructures: fullerenes defy conventional wisdom.
    Ruzsinszky A; Perdew JP; Tao J; Csonka GI; Pitarke JM
    Phys Rev Lett; 2012 Dec; 109(23):233203. PubMed ID: 23368198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Chiral Discriminatory van der Waals Interactions Mediated by Chiral Surfaces.
    Barcellona P; Safari H; Salam A; Buhmann SY
    Phys Rev Lett; 2017 May; 118(19):193401. PubMed ID: 28548535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Van der Waals interactions in density functional theory using Wannier functions.
    Silvestrelli PL
    J Phys Chem A; 2009 Apr; 113(17):5224-34. PubMed ID: 19344144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational coherence from van der Waals modes in the native and molten-globule states of ZnII-substituted cytochrome c.
    Dillman KL; Beck WF
    J Phys Chem B; 2011 Jul; 115(26):8657-66. PubMed ID: 21630714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional laser induced fluorescence spectroscopy of van der Waals complexes: fluorobenzene-Ar(n) (n = 1,2).
    Gascooke JR; Alexander UN; Lawrance WD
    J Chem Phys; 2012 Apr; 136(13):134309. PubMed ID: 22482554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. van der Waals screening by single-layer graphene and molybdenum disulfide.
    Tsoi S; Dev P; Friedman AL; Stine R; Robinson JT; Reinecke TL; Sheehan PE
    ACS Nano; 2014 Dec; 8(12):12410-7. PubMed ID: 25412420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.