These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 25469456)
1. Characterization of the draining lymph node response in the mouse drug allergy model: A model for drug hypersensitivity reactions. Zhu X; Cole SH; Kawabata TT; Whritenour J J Immunotoxicol; 2015; 12(4):376-84. PubMed ID: 25469456 [TBL] [Abstract][Full Text] [Related]
2. Selective modulation of B-cell activation markers CD86 and I-Ak on murine draining lymph node cells following allergen or irritant treatment. Gerberick GF; Cruse LW; Miller CM; Ridder GM Toxicol Appl Pharmacol; 1999 Sep; 159(2):142-51. PubMed ID: 10495778 [TBL] [Abstract][Full Text] [Related]
3. Local lymph node assay: differentiating allergic and irritant responses using flow cytometry. Gerberick GF; Cruse LW; Ryan CA Methods; 1999 Sep; 19(1):48-55. PubMed ID: 10525437 [TBL] [Abstract][Full Text] [Related]
4. Divergent hypersensitivity responses following topical application of the quaternary ammonium compound, didecyldimethylammonium bromide. Shane HL; Lukomska E; Stefaniak AB; Anderson SE J Immunotoxicol; 2017 Dec; 14(1):204-214. PubMed ID: 29124973 [TBL] [Abstract][Full Text] [Related]
5. Phenotypic analysis of lymphocyte subpopulations in lymph nodes draining the ear following exposure to contact allergens and irritants. Sikorski EE; Gerberick GF; Ryan CA; Miller CM; Ridder GM Fundam Appl Toxicol; 1996 Nov; 34(1):25-35. PubMed ID: 8937889 [TBL] [Abstract][Full Text] [Related]
6. Use of a B cell marker (B220) to discriminate between allergens and irritants in the local lymph node assay. Gerberick GF; Cruse LW; Ryan CA; Hulette BC; Chaney JG; Skinner RA; Dearman RJ; Kimber I Toxicol Sci; 2002 Aug; 68(2):420-8. PubMed ID: 12151637 [TBL] [Abstract][Full Text] [Related]
7. B cell increases and ex vivo IL-2 production as secondary endpoints for the detection of sensitizers in non-radioisotopic local lymph node assay using flow cytometry. Jung KM; Jang WH; Lee YK; Yum YN; Sohn S; Kim BH; Chung JH; Park YH; Lim KM Toxicol Lett; 2012 Mar; 209(3):255-63. PubMed ID: 22245253 [TBL] [Abstract][Full Text] [Related]
8. Development and partial validation of a mouse model for predicting drug hypersensitivity reactions. Whritenour J; Cole S; Zhu X; Li D; Kawabata TT J Immunotoxicol; 2014; 11(2):141-7. PubMed ID: 23879792 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the irritancy and hypersensitivity potential following topical application of didecyldimethylammonium chloride. Anderson SE; Shane H; Long C; Lukomska E; Meade BJ; Marshall NB J Immunotoxicol; 2016 Jul; 13(4):557-66. PubMed ID: 27216637 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of a human in vitro skin test for predicting drug hypersensitivity reactions. Ahmed SS; Whritenour J; Ahmed MM; Bibby L; Darby L; Wang XN; Watson J; Dickinson AM Toxicol Appl Pharmacol; 2019 Apr; 369():39-48. PubMed ID: 30768973 [TBL] [Abstract][Full Text] [Related]
11. Selective modulation of T cell memory markers CD62L and CD44 on murine draining lymph node cells following allergen and irritant treatment. Gerberick GF; Cruse LW; Miller CM; Sikorski EE; Ridder GM Toxicol Appl Pharmacol; 1997 Sep; 146(1):1-10. PubMed ID: 9299591 [TBL] [Abstract][Full Text] [Related]
12. An intravenous exposure mouse model for prediction of potential drug-sensitization using reporter antigens popliteal lymph node assay. Lin M; Sun W; Wang Y; Li X; Jin Y; Gong W; Fan X; Wang Y J Appl Toxicol; 2012 Jun; 32(6):395-401. PubMed ID: 21721018 [TBL] [Abstract][Full Text] [Related]
13. Potential immunotoxicological health effects following exposure to COREXIT 9500A during cleanup of the Deepwater Horizon oil spill. Anderson SE; Franko J; Lukomska E; Meade BJ J Toxicol Environ Health A; 2011; 74(21):1419-30. PubMed ID: 21916747 [TBL] [Abstract][Full Text] [Related]
14. Development of a flow cytometry assay for the identification and differentiation of chemicals with the potential to elicit irritation, IgE-mediated, or T cell-mediated hypersensitivity responses. Manetz TS; Meade BJ Toxicol Sci; 1999 Apr; 48(2):206-17. PubMed ID: 10353312 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of auricular lymph node cell lymphocyte proliferation and cytokine production as non-radioactive endpoints during murine contact allergy. Ulker OC; Atak A; Ates I; Karakaya A J Immunotoxicol; 2011 Jun; 8(2):131-9. PubMed ID: 21275877 [TBL] [Abstract][Full Text] [Related]
16. Increased cell proliferation in spleen and lymph nodes peripheral to contact allergen application site. Chipinda I; Anderson SE; Butterworth LF; Beezhold D; Siegel PD Toxicology; 2009 Mar; 257(3):113-6. PubMed ID: 19150643 [TBL] [Abstract][Full Text] [Related]
17. Neuropeptide denervation alters both the elicitation and induction phases of contact hypersensitivity in mice. Veronesi B; Williams WC; Smialowicz RJ; Sailstad DM; Doerfler D; Selgrade MJ Toxicol Appl Pharmacol; 1998 Dec; 153(2):243-9. PubMed ID: 9878594 [TBL] [Abstract][Full Text] [Related]
18. Pathogenesis of drug allergy--current concepts and recent insights. Schnyder B; Brockow K Clin Exp Allergy; 2015 Sep; 45(9):1376-83. PubMed ID: 26172398 [TBL] [Abstract][Full Text] [Related]
19. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. MartIn-Fontecha A; Sebastiani S; Höpken UE; Uguccioni M; Lipp M; Lanzavecchia A; Sallusto F J Exp Med; 2003 Aug; 198(4):615-21. PubMed ID: 12925677 [TBL] [Abstract][Full Text] [Related]