BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25469713)

  • 1. Pigment patterns in adult fish result from superimposition of two largely independent pigmentation mechanisms.
    Ceinos RM; Guillot R; Kelsh RN; Cerdá-Reverter JM; Rotllant J
    Pigment Cell Melanoma Res; 2015 Mar; 28(2):196-209. PubMed ID: 25469713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Countershading in zebrafish results from an Asip1 controlled dorsoventral gradient of pigment cell differentiation.
    Cal L; Suarez-Bregua P; Comesaña P; Owen J; Braasch I; Kelsh R; Cerdá-Reverter JM; Rotllant J
    Sci Rep; 2019 Mar; 9(1):3449. PubMed ID: 30837630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss-of-function mutations in the melanocortin 1 receptor cause disruption of dorso-ventral countershading in teleost fish.
    Cal L; Suarez-Bregua P; Braasch I; Irion U; Kelsh R; Cerdá-Reverter JM; Rotllant J
    Pigment Cell Melanoma Res; 2019 Nov; 32(6):817-828. PubMed ID: 31251842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BAC Recombineering of the Agouti Loci from Spotted Gar and Zebrafish Reveals the Evolutionary Ancestry of Dorsal-Ventral Pigment Asymmetry in Fish.
    Cal L; MegÍas M; Cerdá-Reverter JM; Postlethwait JH; Braasch I; Rotllant J
    J Exp Zool B Mol Dev Evol; 2017 Nov; 328(7):697-708. PubMed ID: 28544213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.
    Eom DS; Inoue S; Patterson LB; Gordon TN; Slingwine R; Kondo S; Watanabe M; Parichy DM
    PLoS Genet; 2012; 8(8):e1002899. PubMed ID: 22916035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary diversification of pigment pattern in Danio fishes: differential fms dependence and stripe loss in D. albolineatus.
    Quigley IK; Manuel JL; Roberts RA; Nuckels RJ; Herrington ER; MacDonald EL; Parichy DM
    Development; 2005 Jan; 132(1):89-104. PubMed ID: 15563521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P-Glycoprotein Inhibitor Tariquidar Plays an Important Regulatory Role in Pigmentation in Larval Zebrafish.
    Kasica N; Jakubowski P; Kaleczyc J
    Cells; 2021 Mar; 10(3):. PubMed ID: 33804686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient ectopic overexpression of agouti-signalling protein 1 (asip1) induces pigment anomalies in flatfish.
    Guillot R; Ceinos RM; Cal R; Rotllant J; Cerdá-Reverter JM
    PLoS One; 2012; 7(12):e48526. PubMed ID: 23251332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation.
    Patterson LB; Parichy DM
    PLoS Genet; 2013 May; 9(5):e1003561. PubMed ID: 23737760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zebrafish Pigment Pattern Formation: Insights into the Development and Evolution of Adult Form.
    Patterson LB; Parichy DM
    Annu Rev Genet; 2019 Dec; 53():505-530. PubMed ID: 31509458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics and evolution of pigment patterns in fish.
    Kelsh RN
    Pigment Cell Res; 2004 Aug; 17(4):326-36. PubMed ID: 15250934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of endothelin receptor b1 (rose) during neural crest and pigment pattern development in the zebrafish Danio rerio.
    Parichy DM; Mellgren EM; Rawls JF; Lopes SS; Kelsh RN; Johnson SL
    Dev Biol; 2000 Nov; 227(2):294-306. PubMed ID: 11071756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pax7 is required for establishment of the xanthophore lineage in zebrafish embryos.
    Nord H; Dennhag N; Muck J; von Hofsten J
    Mol Biol Cell; 2016 Jun; 27(11):1853-62. PubMed ID: 27053658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deconstructing evolution of adult phenotypes: genetic analyses of kit reveal homology and evolutionary novelty during adult pigment pattern development of Danio fishes.
    Mills MG; Nuckels RJ; Parichy DM
    Development; 2007 Mar; 134(6):1081-90. PubMed ID: 17287252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and cellular requirements for Fms signaling during zebrafish adult pigment pattern development.
    Parichy DM; Turner JM
    Development; 2003 Mar; 130(5):817-33. PubMed ID: 12538511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunoglobulin superfamily receptor Junctional adhesion molecule 3 (Jam3) requirement for melanophore survival and patterning during formation of zebrafish stripes.
    Eom DS; Patterson LB; Bostic RR; Parichy DM
    Dev Biol; 2021 Aug; 476():314-327. PubMed ID: 33933422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The minimal gap-junction network among melanophores and xanthophores required for stripe pattern formation in zebrafish.
    Usui Y; Aramaki T; Kondo S; Watanabe M
    Development; 2019 Nov; 146(22):. PubMed ID: 31666235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The MITF paralog tfec is required in neural crest development for fate specification of the iridophore lineage from a multipotent pigment cell progenitor.
    Petratou K; Spencer SA; Kelsh RN; Lister JA
    PLoS One; 2021; 16(1):e0244794. PubMed ID: 33439865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zebrafish Leucocyte tyrosine kinase controls iridophore establishment, proliferation and survival.
    Fadeev A; Krauss J; Singh AP; Nüsslein-Volhard C
    Pigment Cell Melanoma Res; 2016 May; 29(3):284-96. PubMed ID: 26801003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of Delta/Notch signaling in zebrafish adult pigment stripe patterning.
    Hamada H; Watanabe M; Lau HE; Nishida T; Hasegawa T; Parichy DM; Kondo S
    Development; 2014 Jan; 141(2):318-24. PubMed ID: 24306107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.