BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 25469751)

  • 41. Functional switching of TGF-beta1 signaling in liver cancer via epigenetic modulation of a single CpG site in TTP promoter.
    Sohn BH; Park IY; Lee JJ; Yang SJ; Jang YJ; Park KC; Kim DJ; Lee DC; Sohn HA; Kim TW; Yoo HS; Choi JY; Bae YS; Yeom YI
    Gastroenterology; 2010 May; 138(5):1898-908. PubMed ID: 20038433
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer.
    Zhang Y; Wang X; Xu B; Wang B; Wang Z; Liang Y; Zhou J; Hu J; Jiang B
    Oncol Rep; 2013 Oct; 30(4):1976-84. PubMed ID: 23900443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell-type-specific signatures of microRNAs on target mRNA expression.
    Sood P; Krek A; Zavolan M; Macino G; Rajewsky N
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2746-51. PubMed ID: 16477010
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer.
    Toyota M; Suzuki H; Sasaki Y; Maruyama R; Imai K; Shinomura Y; Tokino T
    Cancer Res; 2008 Jun; 68(11):4123-32. PubMed ID: 18519671
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MicroRNA transcription start site prediction with multi-objective feature selection.
    Bhattacharyya M; Feuerbach L; Bhadra T; Lengauer T; Bandyopadhyay S
    Stat Appl Genet Mol Biol; 2012 Jan; 11(1):Article 6. PubMed ID: 22499686
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell division is required for de novo methylation of CpG islands in bladder cancer cells.
    Velicescu M; Weisenberger DJ; Gonzales FA; Tsai YC; Nguyen CT; Jones PA
    Cancer Res; 2002 Apr; 62(8):2378-84. PubMed ID: 11956100
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia.
    Roman-Gomez J; Agirre X; Jiménez-Velasco A; Arqueros V; Vilas-Zornoza A; Rodriguez-Otero P; Martin-Subero I; Garate L; Cordeu L; San José-Eneriz E; Martin V; Castillejo JA; Bandrés E; Calasanz MJ; Siebert R; Heiniger A; Torres A; Prosper F
    J Clin Oncol; 2009 Mar; 27(8):1316-22. PubMed ID: 19164206
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA methylation regulates MicroRNA expression.
    Han L; Witmer PD; Casey E; Valle D; Sukumar S
    Cancer Biol Ther; 2007 Aug; 6(8):1284-8. PubMed ID: 17660710
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Type 2 diabetes mellitus-related genetic polymorphisms in microRNAs and microRNA target sites.
    Gong W; Xiao D; Ming G; Yin J; Zhou H; Liu Z
    J Diabetes; 2014 Jul; 6(4):279-89. PubMed ID: 24606011
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methylation of human microRNA genes in normal and neoplastic cells.
    Weber B; Stresemann C; Brueckner B; Lyko F
    Cell Cycle; 2007 May; 6(9):1001-5. PubMed ID: 17457051
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-wide analysis of DNA methylation and expression of microRNAs in breast cancer cells.
    Morita S; Takahashi RU; Yamashita R; Toyoda A; Horii T; Kimura M; Fujiyama A; Nakai K; Tajima S; Matoba R; Ochiya T; Hatada I
    Int J Mol Sci; 2012; 13(7):8259-8272. PubMed ID: 22942701
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise.
    Denham J; O'Brien BJ; Marques FZ; Charchar FJ
    J Appl Physiol (1985); 2015 Feb; 118(4):475-88. PubMed ID: 25539938
    [TBL] [Abstract][Full Text] [Related]  

  • 53. m6A Modification and Implications for microRNAs.
    Erson-Bensan AE; Begik O
    Microrna; 2017; 6(2):97-101. PubMed ID: 28494721
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interplay between the miRNome and the epigenetic machinery: Implications in health and disease.
    Poddar S; Kesharwani D; Datta M
    J Cell Physiol; 2017 Nov; 232(11):2938-2945. PubMed ID: 28112397
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crosstalk between miRNAs and DNA Methylation in Cancer.
    Saviana M; Le P; Micalo L; Del Valle-Morales D; Romano G; Acunzo M; Li H; Nana-Sinkam P
    Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epigenetic alteration of microRNAs in DNMT3B-mutated patients of ICF syndrome.
    Gatto S; Della Ragione F; Cimmino A; Strazzullo M; Fabbri M; Mutarelli M; Ferraro L; Weisz A; D'Esposito M; Matarazzo MR
    Epigenetics; 2010 Jul; 5(5):427-43. PubMed ID: 20448464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impacts of pretranscriptional DNA methylation, transcriptional transcription factor, and posttranscriptional microRNA regulations on protein evolutionary rate.
    Chuang TJ; Chiang TW
    Genome Biol Evol; 2014 Jun; 6(6):1530-41. PubMed ID: 24923326
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The complex interplay between DNA methylation and miRNAs in gene expression regulation.
    Fuso A; Raia T; Orticello M; Lucarelli M
    Biochimie; 2020 Jun; 173():12-16. PubMed ID: 32061806
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of microRNAs by epigenetics and their interplay involved in cancer.
    Liu X; Chen X; Yu X; Tao Y; Bode AM; Dong Z; Cao Y
    J Exp Clin Cancer Res; 2013 Nov; 32(1):96. PubMed ID: 24261995
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Progresses of DNA methylation in common ocular tumor].
    Liu X; Zhou P; Lu Y; Luo Y
    Zhonghua Yan Ke Za Zhi; 2015 Dec; 51(12):950-4. PubMed ID: 26888278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.