These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
535 related articles for article (PubMed ID: 25469865)
1. A study on the ability of quaternary ammonium groups attached to a polyurethane foam wound dressing to inhibit bacterial attachment and biofilm formation. Tran PL; Hamood AN; de Souza A; Schultz G; Liesenfeld B; Mehta D; Reid TW Wound Repair Regen; 2015; 23(1):74-81. PubMed ID: 25469865 [TBL] [Abstract][Full Text] [Related]
2. The ability of quaternary ammonium groups attached to a urethane bandage to inhibit bacterial attachment and biofilm formation in a mouse wound model. Tran PL; Huynh E; Hamood AN; de Souza A; Schultz G; Liesenfeld B; Mehta D; Webster D; Reid TW Int Wound J; 2017 Feb; 14(1):79-84. PubMed ID: 26712337 [TBL] [Abstract][Full Text] [Related]
3. Prevention of biofilm formation by polyquaternary polymer. Dirain CO; Silva RC; Antonelli PJ Int J Pediatr Otorhinolaryngol; 2016 Sep; 88():157-62. PubMed ID: 27497405 [TBL] [Abstract][Full Text] [Related]
4. The ability of a colloidal silver gel wound dressing to kill bacteria in vitro and in vivo. Tran PL; Huynh E; Hamood AN; de Souza A; Mehta D; Moeller KW; Moeller CD; Morgan M; Reid TW J Wound Care; 2017 Apr; 26(sup4):S16-S24. PubMed ID: 28379105 [TBL] [Abstract][Full Text] [Related]
5. Cadexomer iodine provides superior efficacy against bacterial wound biofilms in vitro and in vivo. Fitzgerald DJ; Renick PJ; Forrest EC; Tetens SP; Earnest DN; McMillan J; Kiedaisch BM; Shi L; Roche ED Wound Repair Regen; 2017 Jan; 25(1):13-24. PubMed ID: 27859922 [TBL] [Abstract][Full Text] [Related]
6. Impact of a novel, antimicrobial dressing on in vivo, Pseudomonas aeruginosa wound biofilm: quantitative comparative analysis using a rabbit ear model. Seth AK; Zhong A; Nguyen KT; Hong SJ; Leung KP; Galiano RD; Mustoe TA Wound Repair Regen; 2014; 22(6):712-9. PubMed ID: 25230854 [TBL] [Abstract][Full Text] [Related]
7. Activity of Norspermidine on Bacterial Biofilms of Multidrug-Resistant Clinical Isolates Associated with Persistent Extremity Wound Infections. Cardile AP; Woodbury RL; Sanchez CJ; Becerra SC; Garcia RA; Mende K; Wenke JC; Akers KS Adv Exp Med Biol; 2017; 973():53-70. PubMed ID: 27864804 [TBL] [Abstract][Full Text] [Related]
8. Clinical and in vitro performance of an antibiofilm Hydrofiber wound dressing. Scully R; Hurlow J; Walker M; Metcalf D; Parsons D; Bowler P J Wound Care; 2018 Sep; 27(9):584-592. PubMed ID: 30204577 [TBL] [Abstract][Full Text] [Related]
9. In vitro prevention and inactivation of biofilms using controlled-release iodine foam dressings for wound healing. Watson F; Chen R; Percival SL Int Wound J; 2024 Jan; 21(1):e14365. PubMed ID: 37715349 [TBL] [Abstract][Full Text] [Related]
10. Influence of human acute wound fluid on the antibacterial efficacy of different antiseptic polyurethane foam dressings: An in vitro analysis. Rembe JD; Fromm-Dornieden C; Böhm J; Stuermer EK Wound Repair Regen; 2018 Jan; 26(1):27-35. PubMed ID: 29363857 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial Efficacy of a Silver Impregnated Hydrophilic PU Foam. Percival SL Surg Technol Int; 2018 Jun; 32():67-74. PubMed ID: 29529703 [TBL] [Abstract][Full Text] [Related]
12. Next science wound gel technology, a novel agent that inhibits biofilm development by gram-positive and gram-negative wound pathogens. Miller KG; Tran PL; Haley CL; Kruzek C; Colmer-Hamood JA; Myntti M; Hamood AN Antimicrob Agents Chemother; 2014 Jun; 58(6):3060-72. PubMed ID: 24637684 [TBL] [Abstract][Full Text] [Related]
13. Controlling methicillin resistant Staphyloccocus aureus and Pseudomonas aeruginosa wound infections with a novel biomaterial. Martineau L; Davis SC; Peng HT; Hung A J Invest Surg; 2007; 20(4):217-27. PubMed ID: 17710602 [TBL] [Abstract][Full Text] [Related]
14. The use of desiccation to treat Staphylococcus aureus biofilm-infected wounds. Park E; Long SA; Seth AK; Geringer M; Xu W; Chavez-Munoz C; Leung K; Hong SJ; Galiano RD; Mustoe TA Wound Repair Regen; 2016 Mar; 24(2):394-401. PubMed ID: 26519217 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings. Brandenburg KS; Calderon DF; Kierski PR; Brown AL; Shah NM; Abbott NL; Schurr MJ; Murphy CJ; McAnulty JF; Czuprynski CJ Wound Repair Regen; 2015; 23(6):842-54. PubMed ID: 26342168 [TBL] [Abstract][Full Text] [Related]
16. Development of biofilm-targeted antimicrobial wound dressing for the treatment of chronic wound infections. Ng SF; Leow HL Drug Dev Ind Pharm; 2015; 41(11):1902-9. PubMed ID: 25758412 [TBL] [Abstract][Full Text] [Related]
17. PDADMAC/Alginate-Coated Gold Nanorod For Eradication of Staphylococcus Aureus Biofilms. Manimaran M; Teo YY; Kah JCY; Beishenaliev A; Loke YL; Foo YY; Ng SF; Chee CF; Chin SP; Faruqu FN; Chang CY; Misran M; Chung LY; Leo BF; Chiou SH; Chang CC; Tay ST; Kiew LV Int J Nanomedicine; 2024; 19():3697-3714. PubMed ID: 38681091 [TBL] [Abstract][Full Text] [Related]
18. Antibacterial properties and reduction of MRSA biofilm with a dressing combining polyabsorbent fibres and a silver matrix. Desroche N; Dropet C; Janod P; Guzzo J J Wound Care; 2016 Oct; 25(10):577-584. PubMed ID: 27681588 [TBL] [Abstract][Full Text] [Related]
19. Preclinical evaluation of a novel silver gelling fiber dressing on Pseudomonas aeruginosa in a porcine wound infection model. Davis SC; Li J; Gil J; Head C; Valdes J; Glinos GD; Solis M; Higa A; Pastar I Wound Repair Regen; 2019 Jul; 27(4):360-365. PubMed ID: 30920083 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of a polyurethane-based sponge wound dressing with a superhydrophobic layer and an antimicrobial adherent hydrogel layer. Xu H; Zhang Y; Ma J; Miao H; Chen S; Gao S; Rong H; Deng L; Zhang J; Dong A; Li S Acta Biomater; 2024 Jun; 181():235-248. PubMed ID: 38692469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]