These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 25469942)

  • 1. Stable, metastable, and kinetically trapped amyloid aggregate phases.
    Miti T; Mulaj M; Schmit JD; Muschol M
    Biomacromolecules; 2015 Jan; 16(1):326-35. PubMed ID: 25469942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation of fibrils and plaques in amyloid molecular systems.
    Nicodemi M; de Candia A; Coniglio A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041914. PubMed ID: 19905349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High hydrostatic pressure dissociates early aggregates of TTR105-115, but not the mature amyloid fibrils.
    Dirix C; Meersman F; MacPhee CE; Dobson CM; Heremans K
    J Mol Biol; 2005 Apr; 347(5):903-9. PubMed ID: 15784251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into Kinetics of Agitation-Induced Aggregation of Hen Lysozyme under Heat and Acidic Conditions from Various Spectroscopic Methods.
    Chaari A; Fahy C; Chevillot-Biraud A; Rholam M
    PLoS One; 2015; 10(11):e0142095. PubMed ID: 26571264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial extent of charge repulsion regulates assembly pathways for lysozyme amyloid fibrils.
    Hill SE; Miti T; Richmond T; Muschol M
    PLoS One; 2011 Apr; 6(4):e18171. PubMed ID: 21483680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation-dependent scFv antibodies specifically recognize the oligomers assembled from various amyloids and show colocalization of amyloid fibrils with oligomers in patients with amyloidoses.
    Zhang X; Sun XX; Xue D; Liu DG; Hu XY; Zhao M; Yang SG; Yang Y; Xia YJ; Wang Y; Liu RT
    Biochim Biophys Acta; 2011 Dec; 1814(12):1703-12. PubMed ID: 21979582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A minimal conformational switching-dependent model for amyloid self-assembly.
    Ranganathan S; Ghosh D; Maji SK; Padinhateeri R
    Sci Rep; 2016 Feb; 6():21103. PubMed ID: 26883720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex situ atomic force microscopy analysis of beta-amyloid self-assembly and deposition on a synthetic template.
    Ha C; Park CB
    Langmuir; 2006 Aug; 22(16):6977-85. PubMed ID: 16863248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain.
    Zurdo J; Guijarro JI; Jiménez JL; Saibil HR; Dobson CM
    J Mol Biol; 2001 Aug; 311(2):325-40. PubMed ID: 11478864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additional supra-self-assembly of human serum albumin under amyloid-like-forming solution conditions.
    Juárez J; Taboada P; Goy-López S; Cambón A; Madec MB; Yeates SG; Mosquera V
    J Phys Chem B; 2009 Sep; 113(36):12391-9. PubMed ID: 19681594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of protein sequence and amino acid composition in amyloid formation: scrambling and backward reading of IAPP amyloid fibrils.
    Sabaté R; Espargaró A; de Groot NS; Valle-Delgado JJ; Fernàndez-Busquets X; Ventura S
    J Mol Biol; 2010 Nov; 404(2):337-52. PubMed ID: 20887731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of distinct prion protein amyloid fibrils under identical experimental conditions.
    Ziaunys M; Sneideris T; Smirnovas V
    Sci Rep; 2020 Mar; 10(1):4572. PubMed ID: 32165692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the growth, evolution, and self-aggregation of β-amyloid fibrils using tapping-mode atomic force microscopy.
    Serem WK; Bett CK; Ngunjiri JN; Garno JC
    Microsc Res Tech; 2011 Jul; 74(7):699-708. PubMed ID: 21698718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid protofibrils of lysozyme nucleate and grow via oligomer fusion.
    Hill SE; Robinson J; Matthews G; Muschol M
    Biophys J; 2009 May; 96(9):3781-90. PubMed ID: 19413984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry.
    Nettleton EJ; Tito P; Sunde M; Bouchard M; Dobson CM; Robinson CV
    Biophys J; 2000 Aug; 79(2):1053-65. PubMed ID: 10920035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates.
    Castello F; Paredes JM; Ruedas-Rama MJ; Martin M; Roldan M; Casares S; Orte A
    Sci Rep; 2017 Jan; 7():40065. PubMed ID: 28067252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth.
    Foley J; Hill SE; Miti T; Mulaj M; Ciesla M; Robeel R; Persichilli C; Raynes R; Westerheide S; Muschol M
    J Chem Phys; 2013 Sep; 139(12):121901. PubMed ID: 24089713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.