These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 25470020)
1. Identification of a plastid-localized bifunctional nerolidol/linalool synthase in relation to linalool biosynthesis in young grape berries. Zhu BQ; Cai J; Wang ZQ; Xu XQ; Duan CQ; Pan QH Int J Mol Sci; 2014 Dec; 15(12):21992-2010. PubMed ID: 25470020 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Martin DM; Chiang A; Lund ST; Bohlmann J Planta; 2012 Sep; 236(3):919-29. PubMed ID: 22824963 [TBL] [Abstract][Full Text] [Related]
3. Linalool and linalool nerolidol synthases in roses, several genes for little scent. Magnard JL; Bony AR; Bettini F; Campanaro A; Blerot B; Baudino S; Jullien F Plant Physiol Biochem; 2018 Jun; 127():74-87. PubMed ID: 29550664 [TBL] [Abstract][Full Text] [Related]
4. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Aharoni A; Giri AP; Verstappen FW; Bertea CM; Sevenier R; Sun Z; Jongsma MA; Schwab W; Bouwmeester HJ Plant Cell; 2004 Nov; 16(11):3110-31. PubMed ID: 15522848 [TBL] [Abstract][Full Text] [Related]
5. Characterization of three linalool synthase genes from Citrus unshiu Marc. and analysis of linalool-mediated resistance against Xanthomonas citri subsp. citri and Penicilium italicum in citrus leaves and fruits. Shimada T; Endo T; Fujii H; Rodríguez A; Peña L; Omura M Plant Sci; 2014 Dec; 229():154-166. PubMed ID: 25443842 [TBL] [Abstract][Full Text] [Related]
6. Effect of light exposure on linalool biosynthesis and accumulation in grape berries. Sasaki K; Takase H; Matsuyama S; Kobayashi H; Matsuo H; Ikoma G; Takata R Biosci Biotechnol Biochem; 2016 Dec; 80(12):2376-2382. PubMed ID: 27490943 [TBL] [Abstract][Full Text] [Related]
7. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654 [TBL] [Abstract][Full Text] [Related]
9. A grapevine cytochrome P450 generates the precursor of wine lactone, a key odorant in wine. Ilc T; Halter D; Miesch L; Lauvoisard F; Kriegshauser L; Ilg A; Baltenweck R; Hugueney P; Werck-Reichhart D; Duchêne E; Navrot N New Phytol; 2017 Jan; 213(1):264-274. PubMed ID: 27560385 [TBL] [Abstract][Full Text] [Related]
10. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis). Green SA; Chen X; Nieuwenhuizen NJ; Matich AJ; Wang MY; Bunn BJ; Yauk YK; Atkinson RG J Exp Bot; 2012 Mar; 63(5):1951-67. PubMed ID: 22162874 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome and Metabolomics Integrated Analysis Reveals Terpene Synthesis Genes Controlling Linalool Synthesis in Grape Berries. Liu S; Shan B; Zhou X; Gao W; Liu Y; Zhu B; Sun L J Agric Food Chem; 2022 Jul; 70(29):9084-9094. PubMed ID: 35820041 [TBL] [Abstract][Full Text] [Related]
12. Identification of Vitis vinifera (-)-alpha-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Martin DM; Bohlmann J Phytochemistry; 2004 May; 65(9):1223-9. PubMed ID: 15184006 [TBL] [Abstract][Full Text] [Related]
13. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Nagegowda DA; Gutensohn M; Wilkerson CG; Dudareva N Plant J; 2008 Jul; 55(2):224-39. PubMed ID: 18363779 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of two hydroperoxide lyase genes from grape berries : HPL isogenes in Vitis vinifera grapes. Zhu BQ; Xu XQ; Wu YW; Duan CQ; Pan QH Mol Biol Rep; 2012 Jul; 39(7):7443-55. PubMed ID: 22318551 [TBL] [Abstract][Full Text] [Related]
15. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries. Lücker J; Bowen P; Bohlmann J Phytochemistry; 2004 Oct; 65(19):2649-59. PubMed ID: 15464152 [TBL] [Abstract][Full Text] [Related]
16. Dynamic changes in monoterpene accumulation and biosynthesis during grape ripening in three Vitis vinifera L. cultivars. Yue X; Ren R; Ma X; Fang Y; Zhang Z; Ju Y Food Res Int; 2020 Nov; 137():109736. PubMed ID: 33233302 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic and free monoterpene analyses of aroma reveal that isopentenyl diphosphate isomerase inhibits monoterpene biosynthesis in grape (Vitis vinifera L.). Chen T; Xu T; Wang J; Zhang T; Yang J; Feng L; Song T; Yang J; Wu Y BMC Plant Biol; 2024 Jun; 24(1):595. PubMed ID: 38914931 [TBL] [Abstract][Full Text] [Related]
18. Identification and characterization of the linalool/nerolidol synthase from Streptomyces clavuligerus. Nakano C; Kim HK; Ohnishi Y Chembiochem; 2011 Nov; 12(16):2403-7. PubMed ID: 21910204 [No Abstract] [Full Text] [Related]
19. Transcriptome and Metabolite Conjoint Analysis Reveals that Exogenous Methyl Jasmonate Regulates Monoterpene Synthesis in Grape Berry Skin. Li W; Li W; Yang S; Ma Z; Zhou Q; Mao J; Han S; Chen B J Agric Food Chem; 2020 May; 68(18):5270-5281. PubMed ID: 32338508 [TBL] [Abstract][Full Text] [Related]
20. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Liu GF; Liu JJ; He ZR; Wang FM; Yang H; Yan YF; Gao MJ; Gruber MY; Wan XC; Wei S Plant Cell Environ; 2018 Jan; 41(1):176-186. PubMed ID: 28963730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]