BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25470202)

  • 1. Mixed mosaic membranes prepared by layer-by-layer assembly for ionic separations.
    Rajesh S; Yan Y; Chang HC; Gao H; Phillip WA
    ACS Nano; 2014 Dec; 8(12):12338-45. PubMed ID: 25470202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Method for the Efficient Fabrication of Multifunctional Mosaic Membranes by Inkjet Printing.
    Gao P; Hunter A; Summe MJ; Phillip WA
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19772-9. PubMed ID: 27409714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Chemically-Tailored Copolymer Membranes with Tunable Ion Transport Properties.
    Qu S; Dilenschneider T; Phillip WA
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19746-54. PubMed ID: 26287654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing.
    Gao P; Hunter A; Benavides S; Summe MJ; Gao F; Phillip WA
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3386-95. PubMed ID: 26785390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-nanoparticle layer-by-layer surface modification of micro- and ultrafiltration membranes.
    Escobar-Ferrand L; Li D; Lee D; Durning CJ
    Langmuir; 2014 May; 30(19):5545-56. PubMed ID: 24568094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of ions using polyelectrolyte-modified nanoporous track-etched membranes.
    Armstrong JA; Bernal EE; Yaroshchuk A; Bruening ML
    Langmuir; 2013 Aug; 29(32):10287-96. PubMed ID: 23902372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore assembled multilayers of charged polypeptides in microporous membranes for ion separation.
    Hollman AM; Bhattacharyya D
    Langmuir; 2004 Jun; 20(13):5418-24. PubMed ID: 15986681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Transport through Membranes with Charged Nanochannels Formed by Scalable Self-Assembly of Random Copolymer Micelles.
    Sadeghi I; Kronenberg J; Asatekin A
    ACS Nano; 2018 Jan; 12(1):95-108. PubMed ID: 29205035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Junctions Control Electrolyte Transport through Charge-Patterned Membranes.
    Gao F; Hunter A; Qu S; Hoffman JR; Gao P; Phillip WA
    ACS Nano; 2019 Jul; 13(7):7655-7664. PubMed ID: 31199608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of positively charged composite nanofiltration membranes by quaternization crosslinking for precise molecular and ionic separations.
    Fang C; Sun J; Zhang B; Sun Y; Zhu L; Matsuyama H
    J Colloid Interface Sci; 2018 Dec; 531():168-180. PubMed ID: 30031259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox responsive nanotubes from organometallic polymers by template assisted layer by layer fabrication.
    Song J; Jańczewski D; Guo Y; Xu J; Vancso GJ
    Nanoscale; 2013 Dec; 5(23):11692-8. PubMed ID: 24100304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the Assembly Time as a Tool to Control the Surface Morphology and Separation Performance of Membranes with a Tannic Acid-Fe
    Kinfu HH; Rahman MM; Schneider ES; Cevallos-Cueva N; Abetz V
    Membranes (Basel); 2024 Jun; 14(6):. PubMed ID: 38921500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate recovery by high flux low pressure multilayer membranes.
    Disha VJ; Aravindakumar CT; Aravind UK
    Langmuir; 2012 Sep; 28(35):12744-52. PubMed ID: 22871253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein nanotubes comprised of an alternate layer-by-layer assembly using a polycation as an electrostatic glue.
    Qu X; Lu G; Tsuchida E; Komatsu T
    Chemistry; 2008; 14(33):10303-8. PubMed ID: 18816557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients.
    Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M
    Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly.
    Saren Q; Qiu CQ; Tang CY
    Environ Sci Technol; 2011 Jun; 45(12):5201-8. PubMed ID: 21591607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2006 Jun; 298(1):327-40. PubMed ID: 16448663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport properties of track-etched membranes having variable effective pore-lengths.
    Nguyen QH; Ali M; Nasir S; Ensinger W
    Nanotechnology; 2015 Dec; 26(48):485502. PubMed ID: 26553245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation.
    Deng C; Zhang QG; Han GL; Gong Y; Zhu AM; Liu QL
    Nanoscale; 2013 Nov; 5(22):11028-34. PubMed ID: 24072040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.