BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25470293)

  • 1. Outfielders playing in the infield: functions of aging-associated "nuclear" proteins in the mitochondria.
    Czypiorski P; Altschmied J; Rabanter LL; Goy C; Jakob S; Haendeler J
    Curr Mol Med; 2014; 14(10):1247-51. PubMed ID: 25470293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular functions of the dual-targeted catalytic subunit of telomerase, telomerase reverse transcriptase--potential role in senescence and aging.
    Ale-Agha N; Dyballa-Rukes N; Jakob S; Altschmied J; Haendeler J
    Exp Gerontol; 2014 Aug; 56():189-93. PubMed ID: 24583100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FoxO proteins' nuclear retention and BH3-only protein Bim induction evoke mitochondrial dysfunction-mediated apoptosis in berberine-treated HepG2 cells.
    Shukla S; Rizvi F; Raisuddin S; Kakkar P
    Free Radic Biol Med; 2014 Nov; 76():185-99. PubMed ID: 25128467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strangers in strange lands: mitochondrial proteins found at extra-mitochondrial locations.
    Scanlon DP; Salter MW
    Biochem J; 2019 Jan; 476(1):25-37. PubMed ID: 30617163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial genome in aging and senescence.
    Lauri A; Pompilio G; Capogrossi MC
    Ageing Res Rev; 2014 Nov; 18():1-15. PubMed ID: 25042573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of mitochondrial function by forkhead transcription factors.
    Jerome MS; Kuthethur R; Kabekkodu SP; Chakrabarty S
    Biochimie; 2022 Jul; 198():96-108. PubMed ID: 35367579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The coordination of nuclear and mitochondrial communication during aging and calorie restriction.
    Finley LW; Haigis MC
    Ageing Res Rev; 2009 Jul; 8(3):173-88. PubMed ID: 19491041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maintenance and Expression of Mammalian Mitochondrial DNA.
    Gustafsson CM; Falkenberg M; Larsson NG
    Annu Rev Biochem; 2016 Jun; 85():133-60. PubMed ID: 27023847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncoupling FoxO3A mitochondrial and nuclear functions in cancer cells undergoing metabolic stress and chemotherapy.
    Celestini V; Tezil T; Russo L; Fasano C; Sanese P; Forte G; Peserico A; Lepore Signorile M; Longo G; De Rasmo D; Signorile A; Gadaleta RM; Scialpi N; Terao M; Garattini E; Cocco T; Villani G; Moschetta A; Grossi V; Simone C
    Cell Death Dis; 2018 Feb; 9(2):231. PubMed ID: 29445193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. miR-484 regulates mitochondrial network through targeting Fis1.
    Wang K; Long B; Jiao JQ; Wang JX; Liu JP; Li Q; Li PF
    Nat Commun; 2012 Apr; 3():781. PubMed ID: 22510686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis.
    Singhapol C; Pal D; Czapiewski R; Porika M; Nelson G; Saretzki GC
    PLoS One; 2013; 8(1):e52989. PubMed ID: 23326372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Shping 2" different cellular localizations - a potential new player in aging processes.
    Jakob S; Altschmied J; Haendeler J
    Aging (Albany NY); 2009 Jun; 1(7):664-8. PubMed ID: 20157547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground control to major TOM: mitochondria-nucleus communication.
    Eisenberg-Bord M; Schuldiner M
    FEBS J; 2017 Jan; 284(2):196-210. PubMed ID: 27283924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage.
    Haendeler J; Dröse S; Büchner N; Jakob S; Altschmied J; Goy C; Spyridopoulos I; Zeiher AM; Brandt U; Dimmeler S
    Arterioscler Thromb Vasc Biol; 2009 Jun; 29(6):929-35. PubMed ID: 19265030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial Gene Expression: A Playground of Evolutionary Tinkering.
    Neupert W
    Annu Rev Biochem; 2016 Jun; 85():65-76. PubMed ID: 27058308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upregulation of mtSSB by interleukin-6 promotes cell growth through mitochondrial biogenesis-mediated telomerase activation in colorectal cancer.
    Wang G; Wang Q; Huang Q; Chen Y; Sun X; He L; Zhan L; Guo X; Yin C; Fang Y; He X; Xing J
    Int J Cancer; 2019 May; 144(10):2516-2528. PubMed ID: 30415472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Well-known signaling proteins exert new functions in the nucleus and mitochondria.
    Büchner N; Altschmied J; Jakob S; Saretzki G; Haendeler J
    Antioxid Redox Signal; 2010 Aug; 13(4):551-8. PubMed ID: 19958149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of mitochondria from senescent Podospora anserina casts new light on ROS dependent aging mechanisms.
    Plohnke N; Hamann A; Poetsch A; Osiewacz HD; Rögner M; Rexroth S
    Exp Gerontol; 2014 Aug; 56():13-25. PubMed ID: 24556281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae as a model for the study of extranuclear functions of mammalian telomerase.
    Simonicova L; Dudekova H; Ferenc J; Prochazkova K; Nebohacova M; Dusinsky R; Nosek J; Tomaska L
    Curr Genet; 2015 Nov; 61(4):517-27. PubMed ID: 25567623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein trafficking at the crossroads to mitochondria.
    Wasilewski M; Chojnacka K; Chacinska A
    Biochim Biophys Acta Mol Cell Res; 2017 Jan; 1864(1):125-137. PubMed ID: 27810356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.