These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25470354)

  • 21. Growth and ligninolytic system production dynamics of the Phanerochaete chrysosporium fungus A modelling and optimization approach.
    Hormiga JA; Vera J; Frías I; Torres Darias NV
    J Biotechnol; 2008 Oct; 137(1-4):50-8. PubMed ID: 18694789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium.
    Vanden Wymelenberg A; Sabat G; Mozuch M; Kersten PJ; Cullen D; Blanchette RA
    Appl Environ Microbiol; 2006 Jul; 72(7):4871-7. PubMed ID: 16820482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvement of ligninolytic properties in the hyper lignin-degrading fungus Phanerochaete sordida YK-624 using a novel gene promoter.
    Sugiura T; Mori T; Kamei I; Hirai H; Kawagishi H; Kondo R
    FEMS Microbiol Lett; 2012 Jun; 331(1):81-8. PubMed ID: 22506973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. iTRAQ-based quantitative secretome analysis of Phanerochaete chrysosporium.
    Manavalan A; Adav SS; Sze SK
    J Proteomics; 2011 Dec; 75(2):642-54. PubMed ID: 21945728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation.
    Shary S; Kapich AN; Panisko EA; Magnuson JK; Cullen D; Hammel KE
    Appl Environ Microbiol; 2008 Dec; 74(23):7252-7. PubMed ID: 18849459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical stress-responsive genes from the lignin-degrading fungus Phanerochaete chrysosporium exposed to dibenzo-p-dioxin.
    Kurihara H; Wariishi H; Tanaka H
    FEMS Microbiol Lett; 2002 Jul; 212(2):217-20. PubMed ID: 12113937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The first genome-level transcriptome of the wood-degrading fungus Phanerochaete chrysosporium grown on red oak.
    Sato S; Feltus FA; Iyer P; Tien M
    Curr Genet; 2009 Jun; 55(3):273-86. PubMed ID: 19396602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial mapping of extracellular oxidant production by a white rot basidiomycete on wood reveals details of ligninolytic mechanism.
    Hunt CG; Houtman CJ; Jones DC; Kitin P; Korripally P; Hammel KE
    Environ Microbiol; 2013 Mar; 15(3):956-66. PubMed ID: 23206186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress.
    Huang DL; Zeng GM; Feng CL; Hu S; Zhao MH; Lai C; Zhang Y; Jiang XY; Liu HL
    Chemosphere; 2010 Nov; 81(9):1091-7. PubMed ID: 20951406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity.
    Huang DL; Zeng GM; Feng CL; Hu S; Jiang XY; Tang L; Su FF; Zhang Y; Zeng W; Liu HL
    Environ Sci Technol; 2008 Jul; 42(13):4946-51. PubMed ID: 18678031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-dependent profiles of transcripts encoding lignocellulose-modifying enzymes of the white rot fungus Phanerochaete carnosa grown on multiple wood substrates.
    Macdonald J; Master ER
    Appl Environ Microbiol; 2012 Mar; 78(5):1596-600. PubMed ID: 22210217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Saccharification of pumpkin residues by coculturing of Trichoderma reesei RUT-C30 and Phanerochaete chrysosporium Burdsall with delayed inoculation timing.
    Yang R; Meng D; Hu X; Ni Y; Li Q
    J Agric Food Chem; 2013 Sep; 61(38):9192-9. PubMed ID: 24020787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Populus genotype on gene expression by the wood decay fungus Phanerochaete chrysosporium.
    Gaskell J; Marty A; Mozuch M; Kersten PJ; Splinter BonDurant S; Sabat G; Azarpira A; Ralph J; Skyba O; Mansfield SD; Blanchette RA; Cullen D
    Appl Environ Microbiol; 2014 Sep; 80(18):5828-35. PubMed ID: 25015893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wood stimulates the demethoxylation of [O14CH3]-labeled lignin model compounds by the white-rot fungi Phanerochaete chrysosporium and Phlebia radiata.
    Niemenmaa O; Uusi-Rauva A; Hatakka A
    Arch Microbiol; 2006 May; 185(4):307-15. PubMed ID: 16502311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose.
    Mahajan S; Master ER
    Appl Microbiol Biotechnol; 2010 May; 86(6):1903-14. PubMed ID: 20306191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins.
    Vanden Wymelenberg A; Minges P; Sabat G; Martinez D; Aerts A; Salamov A; Grigoriev I; Shapiro H; Putnam N; Belinky P; Dosoretz C; Gaskell J; Kersten P; Cullen D
    Fungal Genet Biol; 2006 May; 43(5):343-56. PubMed ID: 16524749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Homologous Expression of 1,4-Benzoquinone Reductase and Homogentisate 1,2-Dioxygenase Genes on Wood Decay in Hyper-Lignin-Degrading Fungus Phanerochaete sordida YK-624.
    Mori T; Koyama G; Kawagishi H; Hirai H
    Curr Microbiol; 2016 Oct; 73(4):512-8. PubMed ID: 27363425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptomics analysis reveals the high biodegradation efficiency of white-rot fungus Phanerochaete sordida YK-624 on native lignin.
    Wang J; Suzuki T; Mori T; Yin R; Dohra H; Kawagishi H; Hirai H
    J Biosci Bioeng; 2021 Sep; 132(3):253-257. PubMed ID: 34154919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodelignification of rice straw by Phanerochaete chrysosporium in the presence of dirhamnolipid.
    Liang YS; Yuan XZ; Zeng GM; Hu CL; Zhong H; Huang DL; Tang L; Zhao JJ
    Biodegradation; 2010 Jul; 21(4):615-24. PubMed ID: 20131085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of fungal lignocellulose-degrading biocatalysts secreted by Phanerochaete chrysosporium via activity-based protein profiling.
    Schmerling C; Sewald L; Heilmann G; Witfeld F; Begerow D; Jensen K; Bräsen C; Kaschani F; Overkleeft HS; Siebers B; Kaiser M
    Commun Biol; 2022 Nov; 5(1):1254. PubMed ID: 36385496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.