These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
566 related articles for article (PubMed ID: 25470558)
1. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification. Tian Q; Wang Y; Deng R; Lin L; Liu Y; Li J Nanoscale; 2015 Jan; 7(3):987-93. PubMed ID: 25470558 [TBL] [Abstract][Full Text] [Related]
2. Dual amplified and ultrasensitive electrochemical detection of mutant DNA Biomarkers based on nuclease-assisted target recycling and rolling circle amplifications. Wang Q; Yang C; Xiang Y; Yuan R; Chai Y Biosens Bioelectron; 2014 May; 55():266-71. PubMed ID: 24393655 [TBL] [Abstract][Full Text] [Related]
3. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs. Tian W; Li P; He W; Liu C; Li Z Biosens Bioelectron; 2019 Mar; 128():17-22. PubMed ID: 30616213 [TBL] [Abstract][Full Text] [Related]
4. An "off-on" electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA. Zhang P; Wu X; Yuan R; Chai Y Anal Chem; 2015 Mar; 87(6):3202-7. PubMed ID: 25679541 [TBL] [Abstract][Full Text] [Related]
5. Ultrasensitive detection of microRNAs based on hairpin fluorescence probe assisted isothermal amplification. Ma C; Liu S; Shi C Biosens Bioelectron; 2014 Aug; 58():57-60. PubMed ID: 24613970 [TBL] [Abstract][Full Text] [Related]
6. Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification. Liu S; Gong H; Wang Y; Wang L Biosens Bioelectron; 2016 Mar; 77():818-23. PubMed ID: 26513289 [TBL] [Abstract][Full Text] [Related]
7. Discriminative identification of miRNA let-7 family members with high specificity and sensitivity using rolling circle amplification. Zhao B; Song J; Guan Y Acta Biochim Biophys Sin (Shanghai); 2015 Feb; 47(2):130-6. PubMed ID: 25534778 [TBL] [Abstract][Full Text] [Related]
8. Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification. Huang KJ; Liu YJ; Wang HB; Wang YY; Liu YM Biosens Bioelectron; 2014 May; 55():195-202. PubMed ID: 24384259 [TBL] [Abstract][Full Text] [Related]
9. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification. Liu H; Li L; Duan L; Wang X; Xie Y; Tong L; Wang Q; Tang B Anal Chem; 2013 Aug; 85(16):7941-7. PubMed ID: 23855808 [TBL] [Abstract][Full Text] [Related]
10. Rolling circle amplification-mediated in situ synthesis of palladium nanoparticles for the ultrasensitive electrochemical detection of microRNA. Zhang C; Li D; Li D; Wen K; Yang X; Zhu Y Analyst; 2019 Jun; 144(12):3817-3825. PubMed ID: 31086898 [TBL] [Abstract][Full Text] [Related]
11. A split recognition mode combined with cascade signal amplification strategy for highly specific, sensitive detection of microRNA. Wang R; Wang L; Zhao H; Jiang W Biosens Bioelectron; 2016 Dec; 86():834-839. PubMed ID: 27494806 [TBL] [Abstract][Full Text] [Related]
12. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs. Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196 [TBL] [Abstract][Full Text] [Related]
13. An isothermal electrochemical biosensor for the sensitive detection of microRNA based on a catalytic hairpin assembly and supersandwich amplification. Zhang H; Wang Q; Yang X; Wang K; Li Q; Li Z; Gao L; Nie W; Zheng Y Analyst; 2017 Jan; 142(2):389-396. PubMed ID: 28009023 [TBL] [Abstract][Full Text] [Related]
14. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Zhang GJ; Chua JH; Chee RE; Agarwal A; Wong SM Biosens Bioelectron; 2009 Apr; 24(8):2504-8. PubMed ID: 19188058 [TBL] [Abstract][Full Text] [Related]
15. Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24. Li F; Peng J; Wang J; Tang H; Tan L; Xie Q; Yao S Biosens Bioelectron; 2014 Apr; 54():158-64. PubMed ID: 24270466 [TBL] [Abstract][Full Text] [Related]
16. An enzyme-free surface plasmon resonance biosensor for real-time detecting microRNA based on allosteric effect of mismatched catalytic hairpin assembly. Li J; Lei P; Ding S; Zhang Y; Yang J; Cheng Q; Yan Y Biosens Bioelectron; 2016 Mar; 77():435-41. PubMed ID: 26453904 [TBL] [Abstract][Full Text] [Related]
17. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid. Xue Q; Lv Y; Cui H; Gu X; Zhang S; Liu J Anal Chim Acta; 2015 Jan; 856():103-9. PubMed ID: 25542364 [TBL] [Abstract][Full Text] [Related]
18. Sensitive detection of microRNAs with hairpin probe-based circular exponential amplification assay. Wang GL; Zhang CY Anal Chem; 2012 Aug; 84(16):7037-42. PubMed ID: 22834952 [TBL] [Abstract][Full Text] [Related]
19. Target-catalyzed hairpin assembly and intramolecular/intermolecular co-reaction for signal amplified electrochemiluminescent detection of microRNA. Yu YQ; Wang JP; Zhao M; Hong LR; Chai YQ; Yuan R; Zhuo Y Biosens Bioelectron; 2016 Mar; 77():442-50. PubMed ID: 26453905 [TBL] [Abstract][Full Text] [Related]
20. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification. Wu ZS; Zhang S; Zhou H; Shen GL; Yu R Anal Chem; 2010 Mar; 82(6):2221-7. PubMed ID: 20151715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]