BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25471094)

  • 1. Contrasting submergence tolerance in two species of stem-succulent halophytes is not determined by differences in stem internal oxygen dynamics.
    Konnerup D; Moir-Barnetson L; Pedersen O; Veneklaas EJ; Colmer TD
    Ann Bot; 2015 Feb; 115(3):409-18. PubMed ID: 25471094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolerance of combined submergence and salinity in the halophytic stem-succulent Tecticornia pergranulata.
    Colmer TD; Vos H; Pedersen O
    Ann Bot; 2009 Jan; 103(2):303-12. PubMed ID: 18660496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata.
    Pedersen O; Vos H; Colmer TD
    Plant Cell Environ; 2006 Jul; 29(7):1388-99. PubMed ID: 17080960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthesis in aquatic adventitious roots of the halophytic stem-succulent Tecticornia pergranulata (formerly Halosarcia pergranulata).
    Rich SM; Ludwig M; Colmer TD
    Plant Cell Environ; 2008 Jul; 31(7):1007-16. PubMed ID: 18410492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal aeration of paddy field rice (Oryza sativa) during complete submergence---importance of light and floodwater O2.
    Winkel A; Colmer TD; Ismail AM; Pedersen O
    New Phytol; 2013 Mar; 197(4):1193-1203. PubMed ID: 23215967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial versus complete submergence: snorkelling aids root aeration in Rumex palustris but not in R. acetosa.
    Herzog M; Pedersen O
    Plant Cell Environ; 2014 Oct; 37(10):2381-90. PubMed ID: 24450988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes.
    Winkel A; Pedersen O; Ella E; Ismail AM; Colmer TD
    J Exp Bot; 2014 Jul; 65(12):3225-33. PubMed ID: 24759881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water.
    Teakle NL; Colmer TD; Pedersen O
    Plant Cell Environ; 2014 Oct; 37(10):2339-49. PubMed ID: 24393094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic acclimation is important for post-submergence recovery of photosynthesis and growth in two riparian species.
    Luo FL; Nagel KA; Zeng B; Schurr U; Matsubara S
    Ann Bot; 2009 Dec; 104(7):1435-44. PubMed ID: 19854720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drought tolerances of three stem-succulent halophyte species of an inland semiarid salt lake system.
    Marchesini VA; Yin C; Colmer TD; Veneklaas EJ
    Funct Plant Biol; 2014 Dec; 41(12):1230-1238. PubMed ID: 32481072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diel O2 Dynamics in Partially and Completely Submerged Deepwater Rice: Leaf Gas Films Enhance Internodal O2 Status, Influence Gene Expression and Accelerate Stem Elongation for 'Snorkelling' during Submergence.
    Mori Y; Kurokawa Y; Koike M; Malik AI; Colmer TD; Ashikari M; Pedersen O; Nagai K
    Plant Cell Physiol; 2019 May; 60(5):973-985. PubMed ID: 30668838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf gas films of Spartina anglica enhance rhizome and root oxygen during tidal submergence.
    Winkel A; Colmer TD; Pedersen O
    Plant Cell Environ; 2011 Dec; 34(12):2083-92. PubMed ID: 21819414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shoot atmospheric contact is of little importance to aeration of deeper portions of the wetland plant Meionectes brownii; submerged organs mainly acquire O2 from the water column or produce it endogenously in underwater photosynthesis.
    Rich SM; Pedersen O; Ludwig M; Colmer TD
    Plant Cell Environ; 2013 Jan; 36(1):213-23. PubMed ID: 22734500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surviving floods: leaf gas films improve O₂ and CO₂ exchange, root aeration, and growth of completely submerged rice.
    Pedersen O; Rich SM; Colmer TD
    Plant J; 2009 Apr; 58(1):147-56. PubMed ID: 19077169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifting effects of physiological integration on performance of a clonal plant during submergence and de-submergence.
    Luo FL; Chen Y; Huang L; Wang A; Zhang MX; Yu FH
    Ann Bot; 2014 Jun; 113(7):1265-74. PubMed ID: 24723445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salinity tolerances of three succulent halophytes (Tecticornia spp.) differentially distributed along a salinity gradient.
    Moir-Barnetson L; Veneklaas EJ; Colmer TD
    Funct Plant Biol; 2016 Aug; 43(8):739-750. PubMed ID: 32480500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting oxygen dynamics in Limonium narbonense and Sarcocornia fruticosa during partial and complete submergence.
    Pellegrini E; Konnerup D; Winkel A; Casolo V; Pedersen O
    Funct Plant Biol; 2017 Sep; 44(9):867-876. PubMed ID: 32480615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem photosynthesis not pressurized ventilation is responsible for light-enhanced oxygen supply to submerged roots of alder (Alnus glutinosa).
    Armstrong W; Armstrong J
    Ann Bot; 2005 Sep; 96(4):591-612. PubMed ID: 16093272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study.
    Mommer L; Pons TL; Visser EJ
    J Exp Bot; 2006; 57(2):283-90. PubMed ID: 16291797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submergence-induced leaf acclimation in terrestrial species varying in flooding tolerance.
    Mommer L; Wolters-Arts M; Andersen C; Visser EJW; Pedersen O
    New Phytol; 2007; 176(2):337-345. PubMed ID: 17888115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.