These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25471375)

  • 41. UV-visible absorption spectrum of FAD and its reduced forms embedded in a cryptochrome protein.
    Schwinn K; Ferré N; Huix-Rotllant M
    Phys Chem Chem Phys; 2020 Jun; 22(22):12447-12455. PubMed ID: 32458897
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Origin of light-induced spin-correlated radical pairs in cryptochrome.
    Weber S; Biskup T; Okafuji A; Marino AR; Berthold T; Link G; Hitomi K; Getzoff ED; Schleicher E; Norris JR
    J Phys Chem B; 2010 Nov; 114(45):14745-54. PubMed ID: 20684534
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
    Kondoh M; Shiraishi C; Müller P; Ahmad M; Hitomi K; Getzoff ED; Terazima M
    J Mol Biol; 2011 Oct; 413(1):128-37. PubMed ID: 21875594
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception.
    Müller P; Ahmad M
    J Biol Chem; 2011 Jun; 286(24):21033-40. PubMed ID: 21467031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction.
    Lin C; Top D; Manahan CC; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3822-3827. PubMed ID: 29581265
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly.
    Song SH; Oztürk N; Denaro TR; Arat NO; Kao YT; Zhu H; Zhong D; Reppert SM; Sancar A
    J Biol Chem; 2007 Jun; 282(24):17608-12. PubMed ID: 17459876
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways.
    Engelhard C; Wang X; Robles D; Moldt J; Essen LO; Batschauer A; Bittl R; Ahmad M
    Plant Cell; 2014 Nov; 26(11):4519-31. PubMed ID: 25428980
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Light-induced structural changes of apoprotein and chromophore in the sensor of blue light using FAD (BLUF) domain of AppA for a signaling state.
    Masuda S; Hasegawa K; Ono TA
    Biochemistry; 2005 Feb; 44(4):1215-24. PubMed ID: 15667215
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.
    Kaufmann JCD; Krause BS; Grimm C; Ritter E; Hegemann P; Bartl FJ
    J Biol Chem; 2017 Aug; 292(34):14205-14216. PubMed ID: 28659342
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response.
    Gu NN; Zhang YC; Yang HQ
    Mol Plant; 2012 Jan; 5(1):85-97. PubMed ID: 21765176
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulatory Impact of the C-Terminal Tail on Charge Transfer Pathways in
    Richter M; Fingerhut BP
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33086760
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photochemistry of Wild-Type and N378D Mutant E. coli DNA Photolyase with Oxidized FAD Cofactor Studied by Transient Absorption Spectroscopy.
    Müller P; Brettel K; Grama L; Nyitrai M; Lukacs A
    Chemphyschem; 2016 May; 17(9):1329-40. PubMed ID: 26852903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photoactivation of cryptochromes from Drosophila melanogaster and Sylvia borin: insight into the chemical compass mechanism by computational investigation.
    Hong G; Pachter R
    J Phys Chem B; 2015 Mar; 119(10):3883-92. PubMed ID: 25710635
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster.
    Kutta RJ; Archipowa N; Scrutton NS
    Phys Chem Chem Phys; 2018 Nov; 20(45):28767-28776. PubMed ID: 30417904
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A search for radical intermediates in the photocycle of LOV domains.
    Kutta RJ; Magerl K; Kensy U; Dick B
    Photochem Photobiol Sci; 2015 Feb; 14(2):288-99. PubMed ID: 25380177
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii.
    Franz S; Ignatz E; Wenzel S; Zielosko H; Putu EPGN; Maestre-Reyna M; Tsai MD; Yamamoto J; Mittag M; Essen LO
    Nucleic Acids Res; 2018 Sep; 46(15):8010-8022. PubMed ID: 30032195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photoinduced formation of flavin radicals in BLUF domains lacking the central glutamine.
    Fudim R; Mehlhorn J; Berthold T; Weber S; Schleicher E; Kennis JT; Mathes T
    FEBS J; 2015 Aug; 282(16):3161-74. PubMed ID: 25880920
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distinct mechanisms of
    Baik LS; Au DD; Nave C; Foden AJ; Enrriquez-Villalva WK; Holmes TC
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23339-23344. PubMed ID: 31659046
    [No Abstract]   [Full Text] [Related]  

  • 59. A Plant Cryptochrome Controls Key Features of the
    Müller N; Wenzel S; Zou Y; Künzel S; Sasso S; Weiß D; Prager K; Grossman A; Kottke T; Mittag M
    Plant Physiol; 2017 May; 174(1):185-201. PubMed ID: 28360233
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH.
    Damiani MJ; Yalloway GN; Lu J; McLeod NR; O'Neill MA
    Biochemistry; 2009 Dec; 48(48):11399-411. PubMed ID: 19888752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.