BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 25471723)

  • 1. Lipids and proteins--major targets of oxidative modifications in abiotic stressed plants.
    Anjum NA; Sofo A; Scopa A; Roychoudhury A; Gill SS; Iqbal M; Lukatkin AS; Pereira E; Duarte AC; Ahmad I
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4099-121. PubMed ID: 25471723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide dismutase--mentor of abiotic stress tolerance in crop plants.
    Gill SS; Anjum NA; Gill R; Yadav S; Hasanuzzaman M; Fujita M; Mishra P; Sabat SC; Tuteja N
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):10375-94. PubMed ID: 25921757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Damage to photosystem II by lipid peroxidation products.
    Pospíšil P; Yamamoto Y
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):457-466. PubMed ID: 27741410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations.
    Gill SS; Anjum NA; Hasanuzzaman M; Gill R; Trivedi DK; Ahmad I; Pereira E; Tuteja N
    Plant Physiol Biochem; 2013 Sep; 70():204-12. PubMed ID: 23792825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants.
    Hasanuzzaman M; Nahar K; Hossain MS; Mahmud JA; Rahman A; Inafuku M; Oku H; Fujita M
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species signaling in plants under abiotic stress.
    Choudhury S; Panda P; Sahoo L; Panda SK
    Plant Signal Behav; 2013 Apr; 8(4):e23681. PubMed ID: 23425848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative modifications to cellular components in plants.
    Møller IM; Jensen PE; Hansson A
    Annu Rev Plant Biol; 2007; 58():459-81. PubMed ID: 17288534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A concise appraisal of lipid oxidation and lipoxidation in higher plants.
    Alché JD
    Redox Biol; 2019 May; 23():101136. PubMed ID: 30772285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants.
    Rinalducci S; Murgiano L; Zolla L
    J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Oxidative stress in plants exposed to heavy metals].
    Rucińiska-Sobkowiak R
    Postepy Biochem; 2010; 56(2):191-200. PubMed ID: 20873114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Alcohol and oxidative stress].
    Sergent O; Griffon B; Cillard P; Cillard J
    Pathol Biol (Paris); 2001 Nov; 49(9):689-95. PubMed ID: 11762130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants.
    Singh A; Mehta S; Yadav S; Nagar G; Ghosh R; Roy A; Chakraborty A; Singh IK
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Crops for the Future: A Phosphoproteomics Approach.
    Kumar V; Khare T; Sharma M; Wani SH
    Curr Protein Pept Sci; 2018 Feb; 19(4):413-426. PubMed ID: 28190387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls.
    Singh M; Kapoor A; Bhatnagar A
    Chem Biol Interact; 2015 Jun; 234():261-73. PubMed ID: 25559856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Oxidative stress in cells damage processes].
    Kulbacka J; Saczko J; Chwiłkowska A
    Pol Merkur Lekarski; 2009 Jul; 27(157):44-7. PubMed ID: 19650429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives.
    Ortega-Villasante C; Burén S; Barón-Sola Á; Martínez F; Hernández LE
    Methods; 2016 Oct; 109():92-104. PubMed ID: 27424086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer's disease, Parkinson's disease, and diabetes.
    Umeno A; Biju V; Yoshida Y
    Free Radic Res; 2017 Apr; 51(4):413-427. PubMed ID: 28372523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of Lipid Biomarkers and Signals of Photooxidative Stress in Plants.
    Havaux M
    Methods Mol Biol; 2023; 2642():111-128. PubMed ID: 36944875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.