BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 25471953)

  • 1. Using an external surrogate for predictor model training in real-time motion management of lung tumors.
    Rottmann J; Berbeco R
    Med Phys; 2014 Dec; 41(12):121706. PubMed ID: 25471953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of sampling interval in training data acquisition on intrafractional predictive accuracy of indirect dynamic tumor-tracking radiotherapy.
    Mukumoto N; Nakamura M; Akimoto M; Miyabe Y; Yokota K; Matsuo Y; Mizowaki T; Hiraoka M
    Med Phys; 2017 Aug; 44(8):3899-3908. PubMed ID: 28513922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery.
    Vedam S; Docef A; Fix M; Murphy M; Keall P
    Med Phys; 2005 Jun; 32(6):1607-20. PubMed ID: 16013720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive prediction of respiratory motion for motion compensation radiotherapy.
    Ren Q; Nishioka S; Shirato H; Berbeco RI
    Phys Med Biol; 2007 Nov; 52(22):6651-61. PubMed ID: 17975289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential improvements of lung and prostate MLC tracking investigated by treatment simulations.
    Toftegaard J; Keall PJ; O'Brien R; Ruan D; Ernst F; Homma N; Ichiji K; Poulsen PR
    Med Phys; 2018 May; 45(5):2218-2229. PubMed ID: 29574859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The comparative performance of four respiratory motion predictors for real-time tumour tracking.
    Krauss A; Nill S; Oelfke U
    Phys Med Biol; 2011 Aug; 56(16):5303-17. PubMed ID: 21799237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical aspects of real time positron emission tracking for gated radiotherapy.
    Chamberland M; McEwen MR; Xu T
    Med Phys; 2016 Feb; 43(2):783-95. PubMed ID: 26843241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories.
    Teo TP; Ahmed SB; Kawalec P; Alayoubi N; Bruce N; Lyn E; Pistorius S
    Med Phys; 2018 Feb; 45(2):830-845. PubMed ID: 29244902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking.
    Sawant A; Smith RL; Venkat RB; Santanam L; Cho B; Poulsen P; Cattell H; Newell LJ; Parikh P; Keall PJ
    Int J Radiat Oncol Biol Phys; 2009 Jun; 74(2):575-82. PubMed ID: 19327907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate.
    Fassi A; Schaerer J; Fernandes M; Riboldi M; Sarrut D; Baroni G
    Int J Radiat Oncol Biol Phys; 2014 Jan; 88(1):182-8. PubMed ID: 24331665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator.
    Hansen R; Ravkilde T; Worm ES; Toftegaard J; Grau C; Macek K; Poulsen PR
    Med Phys; 2016 May; 43(5):2387. PubMed ID: 27147350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging.
    Zhang Y; Knopf A; Tanner C; Boye D; Lomax AJ
    Phys Med Biol; 2013 Dec; 58(24):8621-45. PubMed ID: 24256693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy.
    Arai TJ; Nofiele J; Madhuranthakam AJ; Yuan Q; Pedrosa I; Chopra R; Sawant A
    Med Phys; 2016 Jun; 43(6):2807-2820. PubMed ID: 27277029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting respiratory motion for four-dimensional radiotherapy.
    Vedam SS; Keall PJ; Docef A; Todor DA; Kini VR; Mohan R
    Med Phys; 2004 Aug; 31(8):2274-83. PubMed ID: 15377094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of respiratory tumour motion for real-time image-guided radiotherapy.
    Sharp GC; Jiang SB; Shimizu S; Shirato H
    Phys Med Biol; 2004 Feb; 49(3):425-40. PubMed ID: 15012011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method of surface marker location optimization for tumor motion estimation in lung stereotactic body radiation therapy.
    Lu B; Chen Y; Park JC; Fan Q; Kahler D; Liu C
    Med Phys; 2015 Jan; 42(1):244-53. PubMed ID: 25563264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An augmented correlation framework for the estimation of tumour translational and rotational motion during external beam radiotherapy treatments using intermittent monoscopic x-ray imaging and an external respiratory signal.
    Nguyen DT; Booth JT; Caillet V; Hardcastle N; Briggs A; Haddad C; Eade T; O'Brien R; Keall PJ
    Phys Med Biol; 2018 Oct; 63(20):205003. PubMed ID: 30183677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The diaphragm as an anatomic surrogate for lung tumor motion.
    Cerviño LI; Chao AK; Sandhu A; Jiang SB
    Phys Med Biol; 2009 Jun; 54(11):3529-41. PubMed ID: 19443952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers.
    Cui Y; Dy JG; Sharp GC; Alexander B; Jiang SB
    Phys Med Biol; 2007 Oct; 52(20):6229-42. PubMed ID: 17921582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An artificial neural network (ANN)-based lung-tumor motion predictor for intrafractional MR tumor tracking.
    Yun J; Mackenzie M; Rathee S; Robinson D; Fallone BG
    Med Phys; 2012 Jul; 39(7):4423-33. PubMed ID: 22830775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.