These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25472976)

  • 1. Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108.
    Lauressergues D; André O; Peng J; Wen J; Chen R; Ratet P; Tadege M; Mysore KS; Rochange SF
    J Exp Bot; 2015 Mar; 66(5):1237-44. PubMed ID: 25472976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HEADLESS, a WUSCHEL homolog, uncovers novel aspects of shoot meristem regulation and leaf blade development in Medicago truncatula.
    Meng Y; Liu H; Wang H; Liu Y; Zhu B; Wang Z; Hou Y; Zhang P; Wen J; Yang H; Mysore KS; Chen J; Tadege M; Niu L; Lin H
    J Exp Bot; 2019 Jan; 70(1):149-163. PubMed ID: 30272208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula.
    Yang T; Li Y; Liu Y; He L; Liu A; Wen J; Mysore KS; Tadege M; Chen J
    Plant Mol Biol; 2021 Jan; 105(1-2):193-204. PubMed ID: 33037987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strigolactone inhibition of shoot branching.
    Gomez-Roldan V; Fermas S; Brewer PB; Puech-Pagès V; Dun EA; Pillot JP; Letisse F; Matusova R; Danoun S; Portais JC; Bouwmeester H; Bécard G; Beveridge CA; Rameau C; Rochange SF
    Nature; 2008 Sep; 455(7210):189-94. PubMed ID: 18690209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development.
    Zhou C; Han L; Hou C; Metelli A; Qi L; Tadege M; Mysore KS; Wang ZY
    Plant Cell; 2011 Jun; 23(6):2106-24. PubMed ID: 21693694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane.
    Shinohara N; Taylor C; Leyser O
    PLoS Biol; 2013; 11(1):e1001474. PubMed ID: 23382651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1.
    van Rongen M; Bennett T; Ticchiarelli F; Leyser O
    PLoS Genet; 2019 Mar; 15(3):e1008023. PubMed ID: 30865619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions.
    Koltai H; LekKala SP; Bhattacharya C; Mayzlish-Gati E; Resnick N; Wininger S; Dor E; Yoneyama K; Yoneyama K; Hershenhorn J; Joel DM; Kapulnik Y
    J Exp Bot; 2010 Jun; 61(6):1739-49. PubMed ID: 20194924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis.
    Brewer PB; Yoneyama K; Filardo F; Meyers E; Scaffidi A; Frickey T; Akiyama K; Seto Y; Dun EA; Cremer JE; Kerr SC; Waters MT; Flematti GR; Mason MG; Weiller G; Yamaguchi S; Nomura T; Smith SM; Yoneyama K; Beveridge CA
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6301-6. PubMed ID: 27194725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula.
    Pellizzaro A; Clochard T; Cukier C; Bourdin C; Juchaux M; Montrichard F; Thany S; Raymond V; Planchet E; Limami AM; Morère-Le Paven MC
    Plant Physiol; 2014 Dec; 166(4):2152-65. PubMed ID: 25367858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation of strigolactone signalling in Arabidopsis.
    Wang L; Wang B; Yu H; Guo H; Lin T; Kou L; Wang A; Shao N; Ma H; Xiong G; Li X; Yang J; Chu J; Li J
    Nature; 2020 Jul; 583(7815):277-281. PubMed ID: 32528176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone.
    Hamiaux C; Drummond RS; Janssen BJ; Ledger SE; Cooney JM; Newcomb RD; Snowden KC
    Curr Biol; 2012 Nov; 22(21):2032-6. PubMed ID: 22959345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers.
    Arite T; Umehara M; Ishikawa S; Hanada A; Maekawa M; Yamaguchi S; Kyozuka J
    Plant Cell Physiol; 2009 Aug; 50(8):1416-24. PubMed ID: 19542179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis.
    Kohlen W; Charnikhova T; Liu Q; Bours R; Domagalska MA; Beguerie S; Verstappen F; Leyser O; Bouwmeester H; Ruyter-Spira C
    Plant Physiol; 2011 Feb; 155(2):974-87. PubMed ID: 21119045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting.
    Urquhart S; Foo E; Reid JB
    Physiol Plant; 2015 Mar; 153(3):392-402. PubMed ID: 24962787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New genes in the strigolactone-related shoot branching pathway.
    Beveridge CA; Kyozuka J
    Curr Opin Plant Biol; 2010 Feb; 13(1):34-9. PubMed ID: 19913454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop.
    Ligerot Y; de Saint Germain A; Waldie T; Troadec C; Citerne S; Kadakia N; Pillot JP; Prigge M; Aubert G; Bendahmane A; Leyser O; Estelle M; Debellé F; Rameau C
    PLoS Genet; 2017 Dec; 13(12):e1007089. PubMed ID: 29220348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of strigolactone transport regulation for symbiotic signaling and shoot branching.
    Borghi L; Liu GW; Emonet A; Kretzschmar T; Martinoia E
    Planta; 2016 Jun; 243(6):1351-60. PubMed ID: 27040840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between the MtDELLA-MtGAF1 Complex and MtARF3 Mediates Transcriptional Control of MtGA3ox1 to Elaborate Leaf Margin Formation in Medicago truncatula.
    Wen L; Kong Y; Wang H; Xu Y; Lu Z; Zhang J; Wang M; Wang X; Han L; Zhou C
    Plant Cell Physiol; 2021 May; 62(2):321-333. PubMed ID: 33386852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strigolactones and Shoot Branching: What Is the Real Hormone and How Does It Work?
    Dun EA; Brewer PB; Gillam EMJ; Beveridge CA
    Plant Cell Physiol; 2023 Sep; 64(9):967-983. PubMed ID: 37526426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.