BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25473103)

  • 1. CTNND2-a candidate gene for reading problems and mild intellectual disability.
    Hofmeister W; Nilsson D; Topa A; Anderlid BM; Darki F; Matsson H; Tapia Páez I; Klingberg T; Samuelsson L; Wirta V; Vezzi F; Kere J; Nordenskjöld M; Syk Lundberg E; Lindstrand A
    J Med Genet; 2015 Feb; 52(2):111-22. PubMed ID: 25473103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A child with autism, behavioral issues, and dysmorphic features found to have a tandem duplication within CTNND2 by mate-pair sequencing.
    Miller DE; Squire A; Bennett JT
    Am J Med Genet A; 2020 Mar; 182(3):543-547. PubMed ID: 31814264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amelioration of the typical cognitive phenotype in a patient with the 5pter deletion associated with Cri-du-chat syndrome in addition to a partial duplication of CTNND2.
    Sardina JM; Walters AR; Singh KE; Owen RX; Kimonis VE
    Am J Med Genet A; 2014 Jul; 164A(7):1761-4. PubMed ID: 24677774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTNND2 deletion and intellectual disability.
    Belcaro C; Dipresa S; Morini G; Pecile V; Skabar A; Fabretto A
    Gene; 2015 Jul; 565(1):146-9. PubMed ID: 25839933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemizygosity of delta-catenin (CTNND2) is associated with severe mental retardation in cri-du-chat syndrome.
    Medina M; Marinescu RC; Overhauser J; Kosik KS
    Genomics; 2000 Jan; 63(2):157-64. PubMed ID: 10673328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multigenerational autosomal dominant inheritance of 5p chromosomal deletions.
    Zhang B; Willing M; Grange DK; Shinawi M; Manwaring L; Vineyard M; Kulkarni S; Cottrell CE
    Am J Med Genet A; 2016 Mar; 170(3):583-93. PubMed ID: 26601658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese.
    Li YJ; Goh L; Khor CC; Fan Q; Yu M; Han S; Sim X; Ong RT; Wong TY; Vithana EN; Yap E; Nakanishi H; Matsuda F; Ohno-Matsui K; Yoshimura N; Seielstad M; Tai ES; Young TL; Saw SM
    Ophthalmology; 2011 Feb; 118(2):368-75. PubMed ID: 21095009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication study supports CTNND2 as a susceptibility gene for high myopia.
    Lu B; Jiang D; Wang P; Gao Y; Sun W; Xiao X; Li S; Jia X; Guo X; Zhang Q
    Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8258-61. PubMed ID: 21911587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymorphisms in the CTNND2 gene and 11q24.1 genomic region are associated with pathological myopia in a Chinese population.
    Yu Z; Zhou J; Chen X; Zhou X; Sun X; Chu R
    Ophthalmologica; 2012; 228(2):123-9. PubMed ID: 22759899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic alterations of δ-catenin/NPRAP/Neurojungin (CTNND2): functional implications in complex human diseases.
    Lu Q; Aguilar BJ; Li M; Jiang Y; Chen YH
    Hum Genet; 2016 Oct; 135(10):1107-16. PubMed ID: 27380241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breakpoint mapping by next generation sequencing reveals causative gene disruption in patients carrying apparently balanced chromosome rearrangements with intellectual deficiency and/or congenital malformations.
    Schluth-Bolard C; Labalme A; Cordier MP; Till M; Nadeau G; Tevissen H; Lesca G; Boutry-Kryza N; Rossignol S; Rocas D; Dubruc E; Edery P; Sanlaville D
    J Med Genet; 2013 Mar; 50(3):144-50. PubMed ID: 23315544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further confirmation of the association between anxiety and CTNND2: replication in humans.
    Nivard MG; Mbarek H; Hottenga JJ; Smit JH; Jansen R; Penninx BW; Middeldorp CM; Boomsma DI
    Genes Brain Behav; 2014 Feb; 13(2):195-201. PubMed ID: 24256404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A homozygous balanced reciprocal translocation suggests LINC00237 as a candidate gene for MOMO (macrosomia, obesity, macrocephaly, and ocular abnormalities) syndrome.
    Vu PY; Toutain J; Cappellen D; Delrue MA; Daoud H; El Moneim AA; Barat P; Montaubin O; Bonnet F; Dai ZQ; Philippe C; Tran CT; Rooryck C; Arveiler B; Saura R; Briault S; Lacombe D; Taine L
    Am J Med Genet A; 2012 Nov; 158A(11):2849-56. PubMed ID: 23034868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-Genome Sequencing of Cytogenetically Balanced Chromosome Translocations Identifies Potentially Pathological Gene Disruptions and Highlights the Importance of Microhomology in the Mechanism of Formation.
    Nilsson D; Pettersson M; Gustavsson P; Förster A; Hofmeister W; Wincent J; Zachariadis V; Anderlid BM; Nordgren A; Mäkitie O; Wirta V; Käller M; Vezzi F; Lupski JR; Nordenskjöld M; Lundberg ES; Carvalho CMB; Lindstrand A
    Hum Mutat; 2017 Feb; 38(2):180-192. PubMed ID: 27862604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. δ-Catenin is genetically and biologically associated with cortical cataract and future Alzheimer-related structural and functional brain changes.
    Jun G; Moncaster JA; Koutras C; Seshadri S; Buros J; McKee AC; Levesque G; Wolf PA; St George-Hyslop P; Goldstein LE; Farrer LA
    PLoS One; 2012; 7(9):e43728. PubMed ID: 22984439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. δ-Catenin (
    van Rootselaar AF; Groffen AJ; de Vries B; Callenbach PMC; Santen GWE; Koelewijn S; Vijfhuizen LS; Buijink A; Tijssen MAJ; van den Maagdenberg AMJM
    Neurology; 2017 Dec; 89(23):2341-2350. PubMed ID: 29127138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing.
    Aristidou C; Koufaris C; Theodosiou A; Bak M; Mehrjouy MM; Behjati F; Tanteles G; Christophidou-Anastasiadou V; Tommerup N; Sismani C
    PLoS One; 2017; 12(1):e0169935. PubMed ID: 28072833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of complex chromosomal rearrangements by targeted capture and next-generation sequencing.
    Sobreira NL; Gnanakkan V; Walsh M; Marosy B; Wohler E; Thomas G; Hoover-Fong JE; Hamosh A; Wheelan SJ; Valle D
    Genome Res; 2011 Oct; 21(10):1720-7. PubMed ID: 21890680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. microRNA-218-5p plays a protective role in eosinophilic airway inflammation via targeting δ-catenin, a novel catenin in asthma.
    Liang Y; Feng Y; Wu W; Chang C; Chen D; Chen S; Zhen G
    Clin Exp Allergy; 2020 Jan; 50(1):29-40. PubMed ID: 31520422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The clinical impact of chromosomal rearrangements with breakpoints upstream of the SOX9 gene: two novel de novo balanced translocations associated with acampomelic campomelic dysplasia.
    Fonseca AC; Bonaldi A; Bertola DR; Kim CA; Otto PA; Vianna-Morgante AM
    BMC Med Genet; 2013 May; 14():50. PubMed ID: 23648064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.