BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25473785)

  • 1. Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy.
    Corbin EA; Kong F; Lim CT; King WP; Bashir R
    Lab Chip; 2015 Feb; 15(3):839-47. PubMed ID: 25473785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.
    Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A
    ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy.
    Wang Y; Xu C; Jiang N; Zheng L; Zeng J; Qiu C; Yang H; Xie S
    Scanning; 2016 Nov; 38(6):558-563. PubMed ID: 26750438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFM indentation study of breast cancer cells.
    Li QS; Lee GY; Ong CN; Lim CT
    Biochem Biophys Res Commun; 2008 Oct; 374(4):609-13. PubMed ID: 18656442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells.
    Nguyen N; Shao Y; Wineman A; Fu J; Waas A
    Math Biosci; 2016 Jul; 277():77-88. PubMed ID: 27107978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular spectroscopic markers, topography and nanomechanics of human lung cancer and breast cancer cells examined by combined confocal Raman microspectroscopy and atomic force microscopy.
    McEwen GD; Wu Y; Tang M; Qi X; Xiao Z; Baker SM; Yu T; Gilbertson TA; DeWald DB; Zhou A
    Analyst; 2013 Feb; 138(3):787-97. PubMed ID: 23187307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-MHz micro-electro-mechanical sensors for atomic force microscopy.
    Legrand B; Salvetat JP; Walter B; Faucher M; Théron D; Aimé JP
    Ultramicroscopy; 2017 Apr; 175():46-57. PubMed ID: 28110263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines.
    Rother J; Nöding H; Mey I; Janshoff A
    Open Biol; 2014 May; 4(5):140046. PubMed ID: 24850913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of differential mass change rates between human breast cancer cell lines in culture.
    Corbin EA; Adeniba OO; Cangellaris OV; King WP; Bashir R
    Biomed Microdevices; 2017 Mar; 19(1):10. PubMed ID: 28144838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures.
    Nikkhah M; Strobl JS; De Vita R; Agah M
    Biomaterials; 2010 Jun; 31(16):4552-61. PubMed ID: 20207413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy.
    Han A; Yang L; Frazier AB
    Clin Cancer Res; 2007 Jan; 13(1):139-43. PubMed ID: 17200348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomechanical characterization of living mammary tissues by atomic force microscopy.
    Plodinec M; Lim RY
    Methods Mol Biol; 2015; 1293():231-46. PubMed ID: 26040692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BRMS1 expression alters the ultrastructural, biomechanical and biochemical properties of MDA-MB-435 human breast carcinoma cells: an AFM and Raman microspectroscopy study.
    Wu Y; McEwen GD; Harihar S; Baker SM; DeWald DB; Zhou A
    Cancer Lett; 2010 Jul; 293(1):82-91. PubMed ID: 20083343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromechanical properties of hydrogels measured with MEMS resonant sensors.
    Corbin EA; Millet LJ; Pikul JH; Johnson CL; Georgiadis JG; King WP; Bashir R
    Biomed Microdevices; 2013 Apr; 15(2):311-9. PubMed ID: 23247581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy.
    Li M; Liu L; Xi N; Wang Y; Xiao X; Zhang W
    Sci China Life Sci; 2015 Sep; 58(9):889-901. PubMed ID: 26354505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated automated nanomanipulation and real-time cellular surface imaging for mechanical properties characterization.
    Eslami S; Zareian R; Jalili N
    Rev Sci Instrum; 2012 Oct; 83(10):105002. PubMed ID: 23126795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local-dependency of morphological and optical properties between breast cancer cell lines.
    Lee SH; Kim OK; Lee S; Kim JK
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():132-138. PubMed ID: 30015018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy.
    Shroff SG; Saner DR; Lal R
    Am J Physiol; 1995 Jul; 269(1 Pt 1):C286-92. PubMed ID: 7631757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.