These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 25473798)
1. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across. Gajewicz A; Cronin MT; Rasulev B; Leszczynski J; Puzyn T Nanotechnology; 2015 Jan; 26(1):015701. PubMed ID: 25473798 [TBL] [Abstract][Full Text] [Related]
2. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Gajewicz A; Schaeublin N; Rasulev B; Hussain S; Leszczynska D; Puzyn T; Leszczynski J Nanotoxicology; 2015 May; 9(3):313-25. PubMed ID: 24983896 [TBL] [Abstract][Full Text] [Related]
3. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542 [TBL] [Abstract][Full Text] [Related]
4. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892 [TBL] [Abstract][Full Text] [Related]
5. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. Pathakoti K; Huang MJ; Watts JD; He X; Hwang HM J Photochem Photobiol B; 2014 Jan; 130():234-40. PubMed ID: 24362319 [TBL] [Abstract][Full Text] [Related]
6. Use of metal/metal oxide spherical cluster and hydroxyl metal coordination complex for descriptor calculation in development of nanoparticle cytotoxicity classification model. Shin HK; Kim KY; Park JW; No KT SAR QSAR Environ Res; 2017 Nov; 28(11):875-888. PubMed ID: 29189078 [TBL] [Abstract][Full Text] [Related]
7. In silico analysis of nanomaterials hazard and risk. Cohen Y; Rallo R; Liu R; Liu HH Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971 [TBL] [Abstract][Full Text] [Related]
8. Genotoxicity induced by metal oxide nanoparticles: a weight of evidence study and effect of particle surface and electronic properties. Golbamaki A; Golbamaki N; Sizochenko N; Rasulev B; Leszczynski J; Benfenati E Nanotoxicology; 2018 Dec; 12(10):1113-1129. PubMed ID: 29888633 [TBL] [Abstract][Full Text] [Related]
9. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells. Roy J; Roy K Nanotoxicology; 2022 Jun; 16(5):629-644. PubMed ID: 36260491 [TBL] [Abstract][Full Text] [Related]
11. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. Kovalishyn V; Abramenko N; Kopernyk I; Charochkina L; Metelytsia L; Tetko IV; Peijnenburg W; Kustov L Food Chem Toxicol; 2018 Feb; 112():507-517. PubMed ID: 28802948 [TBL] [Abstract][Full Text] [Related]
12. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. Li J; Wang C; Yue L; Chen F; Cao X; Wang Z Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199 [TBL] [Abstract][Full Text] [Related]
13. Using quasi-SMILES for the predictive modeling of the safety of 574 metal oxide nanoparticles measured in different experimental conditions. Toropova AP; Toropov AA; Leszczynski J; Sizochenko N Environ Toxicol Pharmacol; 2021 Aug; 86():103665. PubMed ID: 33895354 [TBL] [Abstract][Full Text] [Related]
15. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method. Fjodorova N; Novic M; Gajewicz A; Rasulev B Nanotoxicology; 2017 May; 11(4):475-483. PubMed ID: 28330416 [TBL] [Abstract][Full Text] [Related]
16. Nano-SAR Modeling for Predicting the Cytotoxicity of Metal Oxide Nanoparticles to PaCa2. Shi H; Pan Y; Yang F; Cao J; Tan X; Yuan B; Jiang J Molecules; 2021 Apr; 26(8):. PubMed ID: 33920258 [TBL] [Abstract][Full Text] [Related]
17. Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR. Kar S; Gajewicz A; Roy K; Leszczynski J; Puzyn T Ecotoxicol Environ Saf; 2016 Apr; 126():238-244. PubMed ID: 26773833 [TBL] [Abstract][Full Text] [Related]
18. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Hu X; Cook S; Wang P; Hwang HM Sci Total Environ; 2009 Apr; 407(8):3070-2. PubMed ID: 19215968 [TBL] [Abstract][Full Text] [Related]
19. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Mu Y; Wu F; Zhao Q; Ji R; Qie Y; Zhou Y; Hu Y; Pang C; Hristozov D; Giesy JP; Xing B Nanotoxicology; 2016 Nov; 10(9):1207-14. PubMed ID: 27309010 [TBL] [Abstract][Full Text] [Related]
20. Current situation on the availability of nanostructure-biological activity data. Oksel C; Ma CY; Wang XZ SAR QSAR Environ Res; 2015; 26(2):79-94. PubMed ID: 25608859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]