These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25473933)

  • 1. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.
    Fong J; Xiao Z; Takahata K
    Lab Chip; 2015 Feb; 15(4):1050-8. PubMed ID: 25473933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wirelessly activated device with an integrated ionic polymer metal composite (IPMC) cantilever valve for targeted drug delivery.
    Cheong HR; Nguyen NT; Khaw MK; Teoh BY; Chee PS
    Lab Chip; 2018 Oct; 18(20):3207-3215. PubMed ID: 30229248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves.
    Rahimi S; Sarraf EH; Wong GK; Takahata K
    Biomed Microdevices; 2011 Apr; 13(2):267-77. PubMed ID: 21161600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.
    Zainal MA; Ahmad A; Mohamed Ali MS
    Biomed Microdevices; 2017 Mar; 19(1):8. PubMed ID: 28124762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless displacement sensing of micromachined spiral-coil actuator using resonant frequency tracking.
    Ali MS; AbuZaiter A; Schlosser C; Bycraft B; Takahata K
    Sensors (Basel); 2014 Jul; 14(7):12399-409. PubMed ID: 25014100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intelligent telemetric stent for wireless monitoring of intravascular pressure and its in vivo testing.
    Chen X; Brox D; Assadsangabi B; Hsiang Y; Takahata K
    Biomed Microdevices; 2014 Oct; 16(5):745-59. PubMed ID: 24903011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-frequency versatile wireless power transfer technology for biomedical implants.
    Jiang H; Zhang J; Lan D; Chao ; Liou S; Shahnasser H; Fechter R; Hirose S; Harrison M; Roy S
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):526-35. PubMed ID: 23893211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless Hyperthermia Stent System for Restenosis Treatment and Testing With Swine Model.
    Yi Y; Chen J; Selvaraj M; Hsiang Y; Takahata K
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):1097-1104. PubMed ID: 31449000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
    Meng C; Gall OZ; Irazoqui PP
    Biomed Microdevices; 2013 Dec; 15(6):973-83. PubMed ID: 23832644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices.
    Lee SY; Hong JH; Hsieh CH; Liang MC; Kung JY
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):256-65. PubMed ID: 23853325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wirelessly Actuated Microfluidic Pump and Valve for Controlled Liquid Delivery in Dental Implants.
    Xu Y; Lin H; Xiao B; Tanoto H; Berinstein J; Khoshnaw A; Young S; Zhou Y; Dong X
    Adv Healthc Mater; 2024 Aug; ():e2402373. PubMed ID: 39109957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Pumping performance of a new piezoelectric pump for drug delivery].
    Kan J; Yang Z; Tang K; Cheng G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):297-301. PubMed ID: 15143563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wireless batteryless deep-seated implantable ultrasonic pulser-receiver powered by magnetic coupling.
    Tang SC; Jolesz FA; Clement GT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1211-21. PubMed ID: 21693403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary validation of a new magnetic wireless blood pump.
    Kim SH; Ishiyama K; Hashi S; Shiraishi Y; Hayatsu Y; Akiyama M; Saiki Y; Yambe T
    Artif Organs; 2013 Oct; 37(10):920-6. PubMed ID: 23634711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a remote-control drug delivery implantable chip for cancer local on demand therapy using ionic polymer metal composite actuator.
    Saneei Mousavi MS; Karami AH; Ghasemnejad M; Kolahdouz M; Manteghi F; Ataei F
    J Mech Behav Biomed Mater; 2018 Oct; 86():250-256. PubMed ID: 29986300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic liquid pistons for capillarity-based pumping.
    Malouin BA; Vogel MJ; Olles JD; Cheng L; Hirsa AH
    Lab Chip; 2011 Feb; 11(3):393-7. PubMed ID: 21127823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Noninvasive, Electromagnetic, Epidermal Sensing Device for Hemodynamics Monitoring.
    Mohammed N; Cluff K; Griffith J; Loflin B
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1393-1404. PubMed ID: 31603799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wirelessly powered microfluidic dielectrophoresis devices using printable RF circuits.
    Qiao W; Cho G; Lo YH
    Lab Chip; 2011 Mar; 11(6):1074-80. PubMed ID: 21293829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabricated nanochannel implantable drug delivery devices: trends, limitations and possibilities.
    Gardner P
    Expert Opin Drug Deliv; 2006 Jul; 3(4):479-87. PubMed ID: 16822223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Miniature-Implantable RF-Wireless Active Glaucoma Intraocular Pressure Monitor.
    Chow EY; Chlebowski AL; Irazoqui PP
    IEEE Trans Biomed Circuits Syst; 2010 Dec; 4(6):340-9. PubMed ID: 23850751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.