These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25473935)

  • 1. A new working mode for molecular springs: water intrusion induced by cooling and associated isobaric heat capacity change of a {ZIF-8 + water} system.
    Grosu Y; Eroshenko V; Nedelec JM; Grolier JP
    Phys Chem Chem Phys; 2015 Jan; 17(3):1572-4. PubMed ID: 25473935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the energetic performances of various ZIFs with SOD or RHO topology using high pressure water intrusion-extrusion experiments.
    Khay I; Chaplais G; Nouali H; Ortiz G; Marichal C; Patarin J
    Dalton Trans; 2016 Mar; 45(10):4392-400. PubMed ID: 26811960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergetic effect of temperature and pressure on energetic and structural characteristics of {ZIF-8 + water} molecular spring.
    Grosu Y; Renaudin G; Eroshenko V; Nedelec JM; Grolier JP
    Nanoscale; 2015 May; 7(19):8803-10. PubMed ID: 25907279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Heat of Water Intrusion into a Metal-Organic Framework by Experiment and Simulation.
    Lowe AR; Ślęczkowski P; Arkan E; Le Donne A; Bartolomé L; Amayuelas E; Zajdel P; Chorążewski M; Meloni S; Grosu Y
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):5286-5293. PubMed ID: 38258752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic performances of the metal-organic framework ZIF-8 obtained using high pressure water intrusion-extrusion experiments.
    Ortiz G; Nouali H; Marichal C; Chaplais G; Patarin J
    Phys Chem Chem Phys; 2013 Apr; 15(14):4888-91. PubMed ID: 23443335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the energetic characteristics of {silicalite-1 + water} repulsive clathrates in a wide temperature range.
    Ievtushenko OV; Eroshenko VA; Grosu YG; Nedelec JM; Grolier JP
    Phys Chem Chem Phys; 2013 Mar; 15(12):4451-7. PubMed ID: 23407667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid Intrusion into Zeolitic Imidazolate Framework-7 Nanocrystals: Exposing the Roles of Phase Transition and Gate Opening to Enable Energy Absorption Applications.
    Sun Y; Li Y; Tan JC
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41831-41838. PubMed ID: 30398840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turning Molecular Springs into Nano-Shock Absorbers: The Effect of Macroscopic Morphology and Crystal Size on the Dynamic Hysteresis of Water Intrusion-Extrusion into-from Hydrophobic Nanopores.
    Zajdel P; Madden DG; Babu R; Tortora M; Mirani D; Tsyrin NN; Bartolomé L; Amayuelas E; Fairen-Jimenez D; Lowe AR; Chorążewski M; Leao JB; Brown CM; Bleuel M; Stoudenets V; Casciola CM; Echeverría M; Bonilla F; Grancini G; Meloni S; Grosu Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(23):26699-713. PubMed ID: 35656844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bimetallic Zeolitic Imidazole Frameworks for Improved Stability and Performance of Intrusion-Extrusion Energy Applications.
    Amayuelas E; Sharma SK; Utpalla P; Mor J; Bartolomé L; Carter M; Trump B; Yakovenko AA; Zajdel P; Grosu Y
    J Phys Chem C Nanomater Interfaces; 2023 Sep; 127(37):18310-18315. PubMed ID: 37752902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the Pressure-Induced Amorphization of Zeolitic Imidazolate Framework ZIF-8: Mechanical Instability Due to Shear Mode Softening.
    Ortiz AU; Boutin A; Fuchs AH; Coudert FX
    J Phys Chem Lett; 2013 Jun; 4(11):1861-5. PubMed ID: 26283122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant Osmotic Pressure in the Forced Wetting of Hydrophobic Nanopores.
    Michelin-Jamois M; Picard C; Vigier G; Charlaix E
    Phys Rev Lett; 2015 Jul; 115(3):036101. PubMed ID: 26230804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Framework flexibility of ZIF-8 under liquid intrusion: discovering time-dependent mechanical response and structural relaxation.
    Sun Y; Li Y; Tan JC
    Phys Chem Chem Phys; 2018 Apr; 20(15):10108-10113. PubMed ID: 29589013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrusion and extrusion of water in hydrophobic nanopores.
    Tinti A; Giacomello A; Grosu Y; Casciola CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10266-E10273. PubMed ID: 29138311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal effects of water intrusion in hydrophobic nanoporous materials.
    Karbowiak T; Paulin C; Ballandras A; Weber G; Bellat JP
    J Am Chem Soc; 2009 Jul; 131(29):9898-9. PubMed ID: 19621951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights in the formation of silanol defects in silicalite-1 by water intrusion under high pressure.
    Karbowiak T; Saada MA; Rigolet S; Ballandras A; Weber G; Bezverkhyy I; Soulard M; Patarin J; Bellat JP
    Phys Chem Chem Phys; 2010 Oct; 12(37):11454-66. PubMed ID: 20676454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pure silica chabazite molecular spring: a structural study on water intrusion-extrusion processes.
    Trzpit M; Rigolet S; Paillaud JL; Marichal C; Soulard M; Patarin J
    J Phys Chem B; 2008 Jun; 112(24):7257-66. PubMed ID: 18491935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic behavior of the pure silica ITQ-12 (ITW) zeolite under high pressure water intrusion.
    Khay I; Tzanis L; Daou TJ; Nouali H; Ryzhikov A; Patarin J
    Phys Chem Chem Phys; 2013 Dec; 15(46):20320-5. PubMed ID: 24169538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quality-dependent performance of hydrophobic ZIF-67 upon high-pressure water intrusion-extrusion process.
    Amayuelas E; Bartolomé L; Zhang Y; López Del Amo JM; Bondarchuk O; Nikulin A; Bonilla F; Del Barrio EP; Zajdel P; Grosu Y
    Phys Chem Chem Phys; 2024 Jan; 26(3):2440-2448. PubMed ID: 38167891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subnanometer Topological Tuning of the Liquid Intrusion/Extrusion Characteristics of Hydrophobic Micropores.
    Bushuev YG; Grosu Y; Chora Żewski MA; Meloni S
    Nano Lett; 2022 Mar; 22(6):2164-2169. PubMed ID: 35258978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices.
    Fraux G; Coudert FX; Boutin A; Fuchs AH
    Chem Soc Rev; 2017 Dec; 46(23):7421-7437. PubMed ID: 29051934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.