These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25474050)

  • 21. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and application of a new method for specific and sensitive enumeration of spores of nonproteolytic Clostridium botulinum types B, E, and F in foods and food materials.
    Peck MW; Plowman J; Aldus CF; Wyatt GM; Izurieta WP; Stringer SC; Barker GC
    Appl Environ Microbiol; 2010 Oct; 76(19):6607-14. PubMed ID: 20709854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Change of thermal inactivation of Clostridium botulinum spores during rice cooking.
    Konagaya Y; Urakami H; Hoshino J; Kobayashi A; Sasagawa A; Yamazaki A; Kozaki S; Tanaka N
    J Food Prot; 2009 Nov; 72(11):2400-6. PubMed ID: 19903408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of High-Pressure Processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water.
    Raghubeer EV; Phan BN; Onuoha E; Diggins S; Aguilar V; Swanson S; Lee A
    Int J Food Microbiol; 2020 Oct; 331():108697. PubMed ID: 32563133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal destruction of Clostridium botulinum spores suspended in tomato juice in aluminum thermal death time tubes.
    Odlaug TE; Pflug IJ
    Appl Environ Microbiol; 1977 Jul; 34(1):23-9. PubMed ID: 329760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategy to inactivate Clostridium perfringens spores in meat products.
    Akhtar S; Paredes-Sabja D; Torres JA; Sarker MR
    Food Microbiol; 2009 May; 26(3):272-7. PubMed ID: 19269568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploiting the combined effects of high pressure and moderate heat with nisin on inactivation of Clostridium botulinum spores.
    Gao YL; Ju XR
    J Microbiol Methods; 2008 Jan; 72(1):20-8. PubMed ID: 18068839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments.
    Van Opstal I; Bagamboula CF; Vanmuysen SC; Wuytack EY; Michiels CW
    Int J Food Microbiol; 2004 Apr; 92(2):227-34. PubMed ID: 15109800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation.
    Naim F; Zareifard MR; Zhu S; Huizing RH; Grabowski S; Marcotte M
    Food Microbiol; 2008 Oct; 25(7):936-41. PubMed ID: 18721685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid detection and quantitation of dipicolinic acid from Clostridium botulinum spores using mixed-mode liquid chromatography-tandem mass spectrometry.
    Redan BW; Morrissey TR; Rolfe CA; Aguilar VL; Skinner GE; Reddy NR
    Anal Bioanal Chem; 2022 Mar; 414(8):2767-2774. PubMed ID: 35106614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competitive inhibition between different Clostridium botulinum types and strains.
    Eklund MW; Poysky FT; Peterson ME; Paranjpye RN; Pelroy GA
    J Food Prot; 2004 Dec; 67(12):2682-7. PubMed ID: 15633672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of nonproteolytic Clostridium botulinum with lactic acid bacteria and their bacteriocins at refrigeration temperatures.
    Rodgers S; Peiris P; Casadei G
    J Food Prot; 2003 Apr; 66(4):674-8. PubMed ID: 12696695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of toxigenesis of group II (nonproteolytic) Clostridium botulinum type B in meat products by using a reduced level of nitrite.
    Keto-Timonen R; Lindström M; Puolanne E; Niemistö M; Korkeala H
    J Food Prot; 2012 Jul; 75(7):1346-9. PubMed ID: 22980023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores.
    Reddy NR; Tetzloff RC; Skinner GE
    Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Safety evaluation of sous vide-processed products with respect to nonproteolytic Clostridium botulinum by use of challenge studies and predictive microbiological models.
    Hyytiä-Trees E; Skyttä E; Mokkila M; Kinnunen A; Lindström M; Lähteenmäki L; Ahvenainen R; Korkeala H
    Appl Environ Microbiol; 2000 Jan; 66(1):223-9. PubMed ID: 10618228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of inoculum level and pressure pulse on the inactivation of Clostridium sporogenes spores by pressure-assisted thermal processing.
    Ahn J; Balasubramaniam VM
    J Microbiol Biotechnol; 2007 Apr; 17(4):616-23. PubMed ID: 18051273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of Sodium Chloride on Thermal Inactivation and Recovery of Nonproteolytic Clostridium botulinum Type B Strain KAP B5 Spores
    Juneja VK; Eblen BS
    J Food Prot; 1995 Jul; 58(7):813-816. PubMed ID: 31137323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens type A and Clostridium sporogenes in buffer solutions.
    Paredes-Sabja D; Gonzalez M; Sarker MR; Torres JA
    J Food Sci; 2007 Aug; 72(6):M202-6. PubMed ID: 17995687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods.
    Maier MB; Lenz CA; Vogel RF
    PLoS One; 2017; 12(10):e0187023. PubMed ID: 29073204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a combined selection and enrichment PCR procedure for Clostridium botulinum Types B, E, and F and its use to determine prevalence in fecal samples from slaughtered pigs.
    Dahlenborg M; Borch E; Rådström P
    Appl Environ Microbiol; 2001 Oct; 67(10):4781-8. PubMed ID: 11571185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.