BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25474061)

  • 41. Colonization of a newly constructed commercial chicken further processing plant with Listeria monocytogenes.
    Berrang ME; Meinersmann RJ; Frank JF; Ladely SR
    J Food Prot; 2010 Feb; 73(2):286-91. PubMed ID: 20132673
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Growth and Biofilm Formation by Listeria monocytogenes in Catfish Mucus Extract on Four Food Contact Surfaces at 22 and 10°C and Their Reduction by Commercial Disinfectants.
    Dhowlaghar N; Abeysundara PA; Nannapaneni R; Schilling MW; Chang S; Cheng WH; Sharma CS
    J Food Prot; 2018 Jan; 81(1):59-67. PubMed ID: 29257728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lactose oxidase: An enzymatic approach to inhibit Listeria monocytogenes in milk.
    Flynn BT; Kozak SM; Lawton MR; Alcaine SD
    J Dairy Sci; 2021 Oct; 104(10):10594-10608. PubMed ID: 34334205
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk.
    Koseki S; Mizuno Y; Yamamoto K
    Food Microbiol; 2008 Apr; 25(2):288-93. PubMed ID: 18206771
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Persistent and non-persistent strains of Listeria monocytogenes: A focus on growth kinetics under different temperature, salt, and pH conditions and their sensitivity to sanitizers.
    Magalhães R; Ferreira V; Brandão TR; Palencia RC; Almeida G; Teixeira P
    Food Microbiol; 2016 Aug; 57():103-8. PubMed ID: 27052708
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces.
    Liu C; Duan J; Su YC
    Int J Food Microbiol; 2006 Feb; 106(3):248-53. PubMed ID: 16219378
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Survival of Listeria monocytogenes in commercial food-processing equipment cleaning solutions and subsequent sensitivity to sanitizers and heat.
    Taormina PJ; Beuchat LR
    J Appl Microbiol; 2002; 92(1):71-80. PubMed ID: 11849330
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of acid tolerance response (ATR) on attachment of Listeria monocytogenes Scott A to stainless steel under extended exposure to acid or/and salt stress and resistance of sessile cells to subsequent strong acid challenge.
    Chorianopoulos N; Giaouris E; Grigoraki I; Skandamis P; Nychas GJ
    Int J Food Microbiol; 2011 Feb; 145(2-3):400-6. PubMed ID: 21295367
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of single or sequential hot water and lactic acid decontamination treatments on the survival and growth of listeria monocytogenes and spoilage microflora during aerobic storage of fresh beef at 4, 10, and 25 degrees C.
    Koutsoumanis KP; Ashton LV; Geornaras I; Belk KE; Scanga JA; Kendall PA; Smith GC; Sofos JN
    J Food Prot; 2004 Dec; 67(12):2703-11. PubMed ID: 15633675
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid.
    van der Veen S; Abee T
    Int J Food Microbiol; 2011 Jan; 144(3):421-31. PubMed ID: 21084128
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficacy of bacteriophage LISTEX™P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef.
    Chibeu A; Agius L; Gao A; Sabour PM; Kropinski AM; Balamurugan S
    Int J Food Microbiol; 2013 Oct; 167(2):208-14. PubMed ID: 24125778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of cetylpyridinium chloride, acidified sodium chlorite, and potassium sorbate on populations of Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on fresh beef.
    Lim K; Mustapha A
    J Food Prot; 2004 Feb; 67(2):310-5. PubMed ID: 14968963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advanced oxidation technology with photohydroionization as a surface treatment for controlling Listeria monocytogenes on stainless steel surfaces and ready-to-eat cheese and turkey.
    Saini JK; Marsden JL; Getty KJ; Fung DY
    Foodborne Pathog Dis; 2014 Apr; 11(4):295-300. PubMed ID: 24444302
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chitosan boosts the antimicrobial activity of Origanum vulgare essential oil in modified atmosphere packaged pork.
    Paparella A; Mazzarrino G; Chaves-López C; Rossi C; Sacchetti G; Guerrieri O; Serio A
    Food Microbiol; 2016 Oct; 59():23-31. PubMed ID: 27375241
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effectiveness of chitosan-coated plastic films incorporating antimicrobials in inhibition of Listeria monocytogenes on cold-smoked salmon.
    Ye M; Neetoo H; Chen H
    Int J Food Microbiol; 2008 Oct; 127(3):235-40. PubMed ID: 18707789
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficacy of chlorine and peroxyacetic acid to control Listeria monocytogenes on apples in simulated dump tank water system.
    Su Y; Shen X; Chiu T; Green T; Zhu MJ
    Food Microbiol; 2022 Sep; 106():104033. PubMed ID: 35690452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Model systems allowing quantification of sensitivity to disinfectants and comparison of disinfectant susceptibility of persistent and presumed nonpersistent Listeria monocytogenes.
    Kastbjerg VG; Gram L
    J Appl Microbiol; 2009 May; 106(5):1667-81. PubMed ID: 19226386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heat shock and cold shock treatments affect the survival of Listeria monocytogenes and Salmonella Typhimurium exposed to disinfectants.
    Lin MH; Chiang ML; Pan CL; Chou CC
    J Food Prot; 2012 Apr; 75(4):695-700. PubMed ID: 22488057
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acidified sodium chlorite treatment for inhibition of Listeria monocytogenes growth on the surface of cooked roast beef.
    Beverly RL; Janes ME; Oliver G
    J Food Prot; 2006 Feb; 69(2):432-5. PubMed ID: 16496589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasmids contribute to food processing environment-associated stress survival in three Listeria monocytogenes ST121, ST8, and ST5 strains.
    Naditz AL; Dzieciol M; Wagner M; Schmitz-Esser S
    Int J Food Microbiol; 2019 Jun; 299():39-46. PubMed ID: 30953994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.