BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 25474098)

  • 21. A Reconfigurable Multiplanar In Vitro Simulator for Real-Time Absolute Motion With External and Musculotendon Forces.
    Green JT; Hale RF; Hausselle J; Gonzalez RV
    J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28877307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surrogate articular contact models for computationally efficient multibody dynamic simulations.
    Lin YC; Haftka RT; Queipo NV; Fregly BJ
    Med Eng Phys; 2010 Jul; 32(6):584-94. PubMed ID: 20236853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Musculoskeletal multibody dynamics simulation of the contact mechanics and kinematics of a natural knee joint during a walking cycle.
    Hu J; Chen Z; Xin H; Zhang Q; Jin Z
    Proc Inst Mech Eng H; 2018 May; 232(5):508-519. PubMed ID: 29637803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of computational models in biomechanics.
    Henninger HB; Reese SP; Anderson AE; Weiss JA
    Proc Inst Mech Eng H; 2010; 224(7):801-12. PubMed ID: 20839648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--7.
    Eddy DM; Hollingworth W; Caro JJ; Tsevat J; McDonald KM; Wong JB;
    Value Health; 2012; 15(6):843-50. PubMed ID: 22999134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virtual muscle: a computational approach to understanding the effects of muscle properties on motor control.
    Cheng EJ; Brown IE; Loeb GE
    J Neurosci Methods; 2000 Sep; 101(2):117-30. PubMed ID: 10996372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.
    Sartori M; Maculan M; Pizzolato C; Reggiani M; Farina D
    J Neurophysiol; 2015 Oct; 114(4):2509-27. PubMed ID: 26245321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuromechanic: a computational platform for simulation and analysis of the neural control of movement.
    Bunderson NE; Bingham JT; Sohn MH; Ting LH; Burkholder TJ
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1015-27. PubMed ID: 23027632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.
    Kim JH; Roberts D
    Int J Numer Method Biomed Eng; 2015 Sep; 31(9):e02721. PubMed ID: 25914404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration of neural architecture within a finite element framework for improved neuromusculoskeletal modeling.
    Volk VL; Hamilton LD; Hume DR; Shelburne KB; Fitzpatrick CK
    Sci Rep; 2021 Nov; 11(1):22983. PubMed ID: 34836986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks.
    Pizzolato C; Lloyd DG; Sartori M; Ceseracciu E; Besier TF; Fregly BJ; Reggiani M
    J Biomech; 2015 Nov; 48(14):3929-36. PubMed ID: 26522621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling and identification of human neuromusculoskeletal network based on biomechanical property of muscle.
    Murai A; Yamane K; Nakamura Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3706-9. PubMed ID: 19163517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scientific basis of the OCRA method for risk assessment of biomechanical overload of upper limb, as preferred method in ISO standards on biomechanical risk factors.
    Colombini D; Occhipinti E
    Scand J Work Environ Health; 2018 Jul; 44(4):436-438. PubMed ID: 29961081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Model-based estimation of muscle forces exerted during movements.
    Erdemir A; McLean S; Herzog W; van den Bogert AJ
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):131-54. PubMed ID: 17070969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical testing simulation of a cadaver spine specimen: development and evaluation study.
    Ahn HS; DiAngelo DJ
    Spine (Phila Pa 1976); 2007 May; 32(11):E330-6. PubMed ID: 17495766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model.
    Elias LA; Watanabe RN; Kohn AF
    PLoS Comput Biol; 2014 Nov; 10(11):e1003944. PubMed ID: 25393548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.