These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 25474098)

  • 41. Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping.
    Robertson BD; Sawicki GS
    J Theor Biol; 2014 Jul; 353():121-32. PubMed ID: 24641822
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation.
    Song S; Kidziński Ł; Peng XB; Ong C; Hicks J; Levine S; Atkeson CG; Delp SL
    J Neuroeng Rehabil; 2021 Aug; 18(1):126. PubMed ID: 34399772
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Error propagation from kinematic data to modeled muscle-tendon lengths during walking.
    Oberhofer K; Mithraratne K; Stott NS; Anderson IA
    J Biomech; 2009 Jan; 42(1):77-81. PubMed ID: 19062018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel two-stage framework for musculoskeletal dynamic modeling: an application to multifingered hand movement.
    Li K; Zhang X
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1949-57. PubMed ID: 19272972
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neuromechanical simulation of the locust jump.
    Cofer D; Cymbalyuk G; Heitler WJ; Edwards DH
    J Exp Biol; 2010 Apr; 213(Pt 7):1060-8. PubMed ID: 20228342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb.
    Quental C; Folgado J; Ambrósio J; Monteiro J
    Comput Methods Biomech Biomed Engin; 2015; 18(7):749-59. PubMed ID: 24156405
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A practical biomechanical model of the index finger simulating the kinematics of the muscle/tendon excursions.
    Wu JZ; An KN; Cutlip RG; Dong RG
    Biomed Mater Eng; 2010; 20(2):89-97. PubMed ID: 20592446
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computer simulation of human motion in sports biomechanics.
    Vaughan CL
    Exerc Sport Sci Rev; 1984; 12():373-416. PubMed ID: 6376138
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control.
    Zajac FE
    Crit Rev Biomed Eng; 1989; 17(4):359-411. PubMed ID: 2676342
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrating modelling and experiments to assess dynamic musculoskeletal function in humans.
    Fernandez JW; Pandy MG
    Exp Physiol; 2006 Mar; 91(2):371-82. PubMed ID: 16407475
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling Implantable Passive Mechanisms for Modifying the Transmission of Forces and Movements Between Muscle and Tendons.
    Homayouni T; Underwood KN; Beyer KC; Martin ER; Allan CH; Balasubramanian R
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2208-14. PubMed ID: 25850081
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems.
    Sholukha V; Bonnechere B; Salvia P; Moiseev F; Rooze M; Van Sint Jan S
    J Biomech; 2013 Sep; 46(14):2363-71. PubMed ID: 23972432
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A model of muscle-tendon function in human walking at self-selected speed.
    Endo K; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of biophysical muscle properties on simulating fast human arm movements.
    Bayer A; Schmitt S; Günther M; Haeufle DFB
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):803-821. PubMed ID: 28387534
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait.
    De Groote F; Falisse A
    Proc Biol Sci; 2021 Mar; 288(1946):20202432. PubMed ID: 33653141
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Credibility, Replicability, and Reproducibility in Simulation for Biomedicine and Clinical Applications in Neuroscience.
    Mulugeta L; Drach A; Erdemir A; Hunt CA; Horner M; Ku JP; Myers JG; Vadigepalli R; Lytton WW
    Front Neuroinform; 2018; 12():18. PubMed ID: 29713272
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Central mechanisms for force and motion--towards computational synthesis of human movement.
    Hemami H; Dariush B
    Neural Netw; 2012 Dec; 36():167-78. PubMed ID: 23142849
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mathematical modeling and simulation of the postural control loop. Part III.
    Agarwal GC; Gottlieb GL
    Crit Rev Biomed Eng; 1984; 12(1):49-93. PubMed ID: 6394213
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research.
    Erdemir A; Hunter PJ; Holzapfel GA; Loew LM; Middleton J; Jacobs CR; Nithiarasu P; Löhner R; Wei G; Winkelstein BA; Barocas VH; Guilak F; Ku JP; Hicks JL; Delp SL; Sacks M; Weiss JA; Ateshian GA; Maas SA; McCulloch AD; Peng GCY
    J Biomech Eng; 2018 Feb; 140(2):0247011-02470111. PubMed ID: 29247253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.