These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 25474164)

  • 21. Genetic algorithm with alternating selection pressure for protein side-chain packing and pK(a) prediction.
    Comte P; Vassiliev S; Houghten S; Bruce D
    Biosystems; 2011 Sep; 105(3):263-70. PubMed ID: 21672605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using quantum mechanics to improve estimates of amino acid side chain rotamer energies.
    Renfrew PD; Butterfoss GL; Kuhlman B
    Proteins; 2008 Jun; 71(4):1637-46. PubMed ID: 18076032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved prediction of protein side-chain conformations with SCWRL4.
    Krivov GG; Shapovalov MV; Dunbrack RL
    Proteins; 2009 Dec; 77(4):778-95. PubMed ID: 19603484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An end-to-end deep learning method for protein side-chain packing and inverse folding.
    McPartlon M; Xu J
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2216438120. PubMed ID: 37253017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved energy bound accuracy enhances the efficiency of continuous protein design.
    Roberts KE; Donald BR
    Proteins; 2015 Jun; 83(6):1151-64. PubMed ID: 25846627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a rotamer library for coarse-grained models in protein-folding simulations.
    Larriva M; Rey A
    J Chem Inf Model; 2014 Jan; 54(1):302-13. PubMed ID: 24354725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimization.
    Desmet J; Spriet J; Lasters I
    Proteins; 2002 Jul; 48(1):31-43. PubMed ID: 12012335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Constructing side chains on near-native main chains for ab initio protein structure prediction.
    Samudrala R; Huang ES; Koehl P; Levitt M
    Protein Eng; 2000 Jul; 13(7):453-7. PubMed ID: 10906341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rotamer libraries and probabilities of transition between rotamers for the side chains in protein-protein binding.
    Kirys T; Ruvinsky AM; Tuzikov AV; Vakser IA
    Proteins; 2012 Aug; 80(8):2089-98. PubMed ID: 22544766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modelling antibody side chain conformations using heuristic database search.
    Ritchie DW; Kemp GJ
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():237-40. PubMed ID: 9322043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A method to configure protein side-chains from the main-chain trace in homology modelling.
    Eisenmenger F; Argos P; Abagyan R
    J Mol Biol; 1993 Jun; 231(3):849-60. PubMed ID: 8515455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GEM: a Gaussian Evolutionary Method for predicting protein side-chain conformations.
    Yang JM; Tsai CH; Hwang MJ; Tsai HK; Hwang JK; Kao CY
    Protein Sci; 2002 Aug; 11(8):1897-907. PubMed ID: 12142444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Statistical and conformational analysis of the electron density of protein side chains.
    Shapovalov MV; Dunbrack RL
    Proteins; 2007 Feb; 66(2):279-303. PubMed ID: 17080462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advantages of fine-grained side chain conformer libraries.
    Shetty RP; De Bakker PI; DePristo MA; Blundell TL
    Protein Eng; 2003 Dec; 16(12):963-9. PubMed ID: 14983076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Statistically based reduced representation of amino acid side chains.
    Rainey JK; Goh MC
    J Chem Inf Comput Sci; 2004; 44(3):817-30. PubMed ID: 15154746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IRECS: a new algorithm for the selection of most probable ensembles of side-chain conformations in protein models.
    Hartmann C; Antes I; Lengauer T
    Protein Sci; 2007 Jul; 16(7):1294-307. PubMed ID: 17567749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: a side-chain prediction algorithm based on side-chain backbone interactions.
    Spassov VZ; Yan L; Flook PK
    Protein Sci; 2007 Mar; 16(3):494-506. PubMed ID: 17242380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incorporating knowledge-based biases into an energy-based side-chain modeling method: application to comparative modeling of protein structure.
    Mendes J; Nagarajaram HA; Soares CM; Blundell TL; Carrondo MA
    Biopolymers; 2001 Aug; 59(2):72-86. PubMed ID: 11373721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.