BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 25474252)

  • 1. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
    Gkeka P; Angelikopoulos P; Sarkisov L; Cournia Z
    PLoS Comput Biol; 2014 Dec; 10(12):e1003917. PubMed ID: 25474252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations.
    Wang Y; Gkeka P; Fuchs JE; Liedl KR; Cournia Z
    Biochim Biophys Acta; 2016 Nov; 1858(11):2846-2857. PubMed ID: 27526680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes.
    Angelikopoulos P; Sarkisov L; Cournia Z; Gkeka P
    Nanoscale; 2017 Jan; 9(3):1040-1048. PubMed ID: 27740657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes.
    Bennett WF; MacCallum JL; Tieleman DP
    J Am Chem Soc; 2009 Feb; 131(5):1972-8. PubMed ID: 19146400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterol affects C₆₀ translocation across lipid bilayers.
    Sun D; Lin X; Gu N
    Soft Matter; 2014 Apr; 10(13):2160-8. PubMed ID: 24652350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations.
    Prates Ramalho JP; Gkeka P; Sarkisov L
    Langmuir; 2011 Apr; 27(7):3723-30. PubMed ID: 21391652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.
    Hu Y; Patel S
    Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations.
    Van Lehn RC; Alexander-Katz A
    Soft Matter; 2015 Apr; 11(16):3165-75. PubMed ID: 25757187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study.
    Saito H; Shinoda W
    J Phys Chem B; 2011 Dec; 115(51):15241-50. PubMed ID: 22081997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling nanoparticle wrapping or translocation in bilayer membranes.
    Curtis EM; Bahrami AH; Weikl TR; Hall CK
    Nanoscale; 2015 Sep; 7(34):14505-14. PubMed ID: 26260123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand Lipophilicity Determines Molecular Mechanisms of Nanoparticle Adsorption to Lipid Bilayers.
    Huang-Zhu CA; Sheavly JK; Chew AK; Patel SJ; Van Lehn RC
    ACS Nano; 2024 Feb; 18(8):6424-6437. PubMed ID: 38354368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating membrane properties: the effect of trehalose and cholesterol on a phospholipid bilayer.
    Doxastakis M; Sum AK; de Pablo JJ
    J Phys Chem B; 2005 Dec; 109(50):24173-81. PubMed ID: 16375409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Cholesterol on the Thermodynamics and Kinetics of Passive Transport of Water through Lipid Membranes.
    Issack BB; Peslherbe GH
    J Phys Chem B; 2015 Jul; 119(29):9391-400. PubMed ID: 25679811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect.
    Li Y; Chen X; Gu N
    J Phys Chem B; 2008 Dec; 112(51):16647-53. PubMed ID: 19032046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretch-Induced Interdigitation of a Phospholipid/Cholesterol Bilayer.
    Shigematsu T; Koshiyama K; Wada S
    J Phys Chem B; 2018 Mar; 122(9):2556-2563. PubMed ID: 29419298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partitioning of nanoscale particles on a heterogeneous multicomponent lipid bilayer.
    Yang K; Yang R; Tian X; He K; Filbrun SL; Fang N; Ma Y; Yuan B
    Phys Chem Chem Phys; 2018 Nov; 20(44):28241-28248. PubMed ID: 30398246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning of ethanol in multi-component membranes: effects on membrane structure.
    Polley A; Vemparala S
    Chem Phys Lipids; 2013 Jan; 166():1-11. PubMed ID: 23220048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Miltefosine-Membrane Interactions Using Molecular Dynamics Simulations.
    de Sá MM; Sresht V; Rangel-Yagui CO; Blankschtein D
    Langmuir; 2015 Apr; 31(15):4503-12. PubMed ID: 25819781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.