These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 25474252)

  • 41. The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid.
    Asakawa H; Fukuma T
    Nanotechnology; 2009 Jul; 20(26):264008. PubMed ID: 19509439
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microsecond Simulations of the Diphtheria Toxin Translocation Domain in Association with Anionic Lipid Bilayers.
    Flores-Canales JC; Kurnikova M
    J Phys Chem B; 2015 Sep; 119(36):12074-85. PubMed ID: 26305016
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Simulation Study on the Interaction Between Pollutant Nanoparticles and the Pulmonary Surfactant Monolayer.
    Yue K; Sun X; Tang J; Wei Y; Zhang X
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277358
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.
    Posokhov YO; Kyrychenko A
    Comput Biol Chem; 2013 Oct; 46():23-31. PubMed ID: 23764528
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of Monovalent Cation Size on Nanodomain Formation in Anionic-Zwitterionic Mixed Bilayers.
    Ganesan SJ; Xu H; Matysiak S
    J Phys Chem B; 2017 Feb; 121(4):787-799. PubMed ID: 28002946
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane.
    Liu Y; Li S; Liu X; Sun H; Yue T; Zhang X; Yan B; Cao D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):23822-23831. PubMed ID: 31250627
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy landscape for the insertion of amphiphilic nanoparticles into lipid membranes: A computational study.
    Van Lehn RC; Alexander-Katz A
    PLoS One; 2019; 14(1):e0209492. PubMed ID: 30625163
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays.
    Lu B; Smith T; Schmidt JJ
    Nanoscale; 2015 May; 7(17):7858-66. PubMed ID: 25853986
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural organization of sterol molecules in DPPC bilayers: a coarse-grained molecular dynamics investigation.
    Zhang Y; Carter JW; Lervik A; Brooks NJ; Seddon JM; Bresme F
    Soft Matter; 2016 Feb; 12(7):2108-17. PubMed ID: 26758699
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The aggregation of striped nanoparticles in mixed phospholipid bilayers.
    Noh SY; Nash A; Notman R
    Nanoscale; 2020 Feb; 12(8):4868-4881. PubMed ID: 31916561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational simulations of the interaction of lipid membranes with DNA-functionalized gold nanoparticles.
    Lee OS; Schatz GC
    Methods Mol Biol; 2011; 726():283-96. PubMed ID: 21424456
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mixed DPPC-cholesterol Langmuir monolayers in presence of hydrophilic silica nanoparticles.
    Guzmán E; Liggieri L; Santini E; Ferrari M; Ravera F
    Colloids Surf B Biointerfaces; 2013 May; 105():284-93. PubMed ID: 23384691
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular insights into the uptake of SiO
    Yuan S; Zhang H; Wang X; Zhang H; Zhang Z; Yuan S
    Colloids Surf B Biointerfaces; 2022 Feb; 210():112250. PubMed ID: 34861541
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparative differential scanning calorimetry study of the effects of cholesterol and various oxysterols on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; McElhaney RN
    Chem Phys Lipids; 2016 Feb; 195():21-33. PubMed ID: 26620814
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamics of lipids, cholesterol, and transmembrane α-helices from microsecond molecular dynamics simulations.
    Baker MK; Abrams CF
    J Phys Chem B; 2014 Nov; 118(47):13590-600. PubMed ID: 25380392
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Disruption of supported lipid bilayers by semihydrophobic nanoparticles.
    Jing B; Zhu Y
    J Am Chem Soc; 2011 Jul; 133(28):10983-9. PubMed ID: 21631111
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings.
    Zhang L; Becton M; Wang X
    J Phys Chem B; 2015 Mar; 119(9):3786-94. PubMed ID: 25675048
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2015 Oct; 191():123-35. PubMed ID: 26368000
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular view of cholesterol flip-flop and chemical potential in different membrane environments.
    Bennett WF; MacCallum JL; Hinner MJ; Marrink SJ; Tieleman DP
    J Am Chem Soc; 2009 Sep; 131(35):12714-20. PubMed ID: 19673519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.